$${{n}\choose{0}}+ {{n}\choose{1}}+{{n}\choose{2}}+\ldots+{{n}\choose{n-1}}+{{n}\choose{n}}=(1+1)^n$$
I don't see why this is true, because (if I'm not mistaken)
\begin{align}&{{n}\choose{0}}+ {{n}\choose{1}}+{{n}\choose{2}}+\ldots+{{n}\choose{n-1}}+{{n}\choose{n}}\\&=1+{{n}\choose{1}}+{{n}\choose{2}}+\ldots+{{n}\choose{n-1}}+1\\ &=2+{{n}\choose{1}}+{{n}\choose{2}}+\ldots+{{n}\choose{n-1}} \end{align}
So my question is why
$$2+{{n}\choose{1}}+{{n}\choose{2}}+\ldots+{{n}\choose{n-1}}=(1+1)^n\;\;\;\;\text{(1)}$$
If anyone requires any context, I am reviewing some set theory, and I came across the proof that the power set of a set $S$ with $n$ elements had $2^{n}$ elements. Just to reiterate, I'm not looking for a proof of the cardinality of the power set. I just want to know, algebraically, why $(1)$ is true.
Thanks.