We are having a party and we have a list of nn people who we may or may not invite. We ask, "how many different possibilities of guests are there?" One way to arrive to an answer is saying, "We can invite no one and there is exactly $n\choose 0$ ways to do that, or we can invite one person and there are $n\choose 1$ ways to do that, ect." Following this logic we arrive at the left hand side. However, we want to double check our answer so we try another method. We say, "We can associate each person with the number $0$ if they are not invited and $1$ if they are. Therefore, each possible configuration is represented by a string of $0$s and $1$s of length $n$. Since each slot in this string has $2$ possibilities, we find that there are exactly $2^n$ distinct strings." This agrees with the right hand side. Since both (valid) methods were used to find an answer to this problem, we see that the left
and right sides of the equation must agree.