I have the following integral to compute: $$ \int_{0}^{\infty}\frac{\log x}{1 + x^2}\text{d}x.$$
Following is my attempt:
$$
\int_{0}^{\infty}\frac{\log x}{1 + x^2}\text{d}x = \int_{0}^{1}\frac{\log x}{1 + x^2}\text{d}x + \int_{1}^{\infty}\frac{\log x}{1 + x^2}\text{d}x
.$$
But using the substitution $x=1/u$, we get: $$\int_{0}^{1}\frac{\log x}{1 + x^2}\text{d}x= -\int_{\infty}^{1}\frac{1}{u^2}\cdot\frac{\log (1/u)}{1 + (1/u)^2}\text{d}u = -\int_{1}^{\infty}\frac{\log u}{1 + u^2}\text{d}u.$$
Hence $$ \int_{0}^{\infty}\frac{\log x}{1 + x^2}\text{d}x = -\int_{1}^{\infty}\frac{\log u}{1 + u^2}\text{d}u + \int_{1}^{\infty}\frac{\log x}{1 + x^2}\text{d}x = 0$$ since $u$ is a dummy variable.
What I'd like to do now is to compute the same integral using the method of residues(I have no experience with it) and I'd gladly appreciate any kind of help.
Thanks.