0

Let $\mathbf{a_n = (1-\frac{1}{\sqrt2})...(1-\frac{1}{\sqrt{n+1}})}$, $n \ge 1$. Does $\lim_{n\to \infty} a_n$ exist? If so, what is it's value?

3 Answers3

4

If $b_1, \ldots, b_n \in (0,1)$ then $$0<(1-b_1)(1-b_2)\dotsc(1-b_n) < \frac{1}{1+b_1+\ldots+b_n}.$$ This can be proved by induction. In this case $b_k=1/\sqrt{k+1}$. Try to find the limit of the right hand side.

WimC
  • 32,192
  • 2
  • 48
  • 88
1

Generally speaking, $\displaystyle\prod(1\pm a_n)$ converges if and only if $\displaystyle\sum a_n$ converges. In this case, $\displaystyle\sum a_n$ is greater than the harmonic series, which is known to diverge.

Lucian
  • 48,334
  • 2
  • 83
  • 154
  • Note that infinite products generally use a different definition of 'diverge' than series - in this case, the product does in fact have a limit (but that limit is such that we talk about it diverging). – Steven Stadnicki Apr 22 '14 at 22:34
  • It's mentioned in the article. – Lucian Apr 22 '14 at 22:37
1

Note that if $k\ge 1$ then $\sqrt{k+1}<k+1$, then $\frac{1}{\sqrt{k+1}}>\frac{1}{k+1}$ and $1-\frac{1}{\sqrt{k+1}}<1-\frac{1}{k+1}=\frac{k}{k+1}$. Then \begin{align} a_n=\left(1-\frac{1}{\sqrt{2}}\right)\left(1-\frac{1}{\sqrt{3}}\right)\cdot\ldots\cdot\left(1-\frac{1}{\sqrt{n+1}}\right)&<\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)\cdot\ldots\cdot\left(\frac{n}{n+1}\right)=\frac{1}{n+1} \end{align} Since $0<a_n<\frac{1}{n+1}$ for all $n$ we obtain $0\le \displaystyle{\lim_{x\rightarrow\infty}{a_n}}\le \displaystyle{\lim_{x\rightarrow\infty}}{\frac{1}{n+1}}=0$. Therefore $\displaystyle{\lim_{x\rightarrow\infty}{a_n}} =0$.