Q) Let, $a_{n} \;=\; \left ( 1-\frac{1}{\sqrt{2}} \right ) ... \left ( 1- \frac{1}{\sqrt{n+1}} \right )$ , $n \geq 1$. Then $\lim_{n\rightarrow \infty } a_{n}$
(A) equals $1$
(B) does not exist
(C) equals $\frac{1}{\sqrt{\pi }}$
(D) equals $0$
My Approach :- I am not getting a particular direction or any procedure to simplify $a_{n}$ and find its value when n tends to infinity.
So, I tried like this simple way to substitute values and trying to find the limiting value :-
$\left ( 1-\frac{1}{\sqrt{1+1}} \right ) * \left ( 1-\frac{1}{\sqrt{2+1}} \right )*\left ( 1-\frac{1}{\sqrt{3+1}} \right )*\left ( 1-\frac{1}{\sqrt{4+1}} \right )*\left ( 1-\frac{1}{\sqrt{5+1}} \right )*\left ( 1-\frac{1}{\sqrt{6+1}} \right )*\left ( 1-\frac{1}{\sqrt{7+1}} \right )*\left ( 1-\frac{1}{\sqrt{8+1}} \right )*.........*\left ( 1-\frac{1}{\sqrt{n+1}} \right )$
=$(0.293)*(0.423)*(0.5)*(0.553)*(0.622)*(0.647)*(0.667)* ....$ =0.009*...
So, here value is tending to zero. I think option $(D)$ is correct.
I have tried like this
$\left ( \frac{\sqrt{2}-1}{\sqrt{2}} \right )*\left ( \frac{\sqrt{3}-1}{\sqrt{3}} \right )*\left ( \frac{\sqrt{4}-1}{\sqrt{4}} \right )*.......\left ( \frac{\sqrt{(n+1)}-1}{\sqrt{n+1}} \right )$
= $\left ( \frac{(\sqrt{2}-1)*(\sqrt{3}-1)*(\sqrt{4}-1)*.......*(\sqrt{n+1}-1)}{{\sqrt{(n+1)!}}} \right )$
Now, again I stuck how to simplify further and find the value for which $a_{n}$ converges when $n$ tends to infinity . Please help if there is any procedure to solve this question.
$\mathbf{a_n = (1-\frac{1}{\sqrt2})...(1-\frac{1}{\sqrt{n+1}})}$, $n \ge 1$ $\Rightarrow$ $\lim_{n\to \infty} a_n$ =?,
Find the value of $\lim_{n \rightarrow \infty} \Big( 1-\frac{1}{\sqrt 2} \Big) \cdots \Big(1-\frac{1}{\sqrt {n+1}} \Big)$,
– Sil Feb 24 '19 at 09:32How can I find $\lim_{n\to \infty} a_n$ and
Let $a_{n}=(1-\frac{1}{\sqrt{2}})\ldots(1-\frac{1}{\sqrt{n+1}}), n \geq 1 $. Then $\lim_\limits{n \rightarrow \infty} a_{n} $...
– Sil Feb 24 '19 at 09:32