For any matrix $A_{n\times n}$ with $\mathrm{tr}(A)=0$ show that there exist two matrices $B$ and $C$ such that $$A=BC-CB.$$
I know to prove this: if $A=BC-CB$, then we have $\mathrm{tr}(A)=0$ because $$\mathrm{tr}(BC)=\mathrm{tr}(CB)$$ so $$\mathrm{tr}(A)=\mathrm{tr}(BC-CB)=\mathrm{tr}(BC)-\mathrm{tr}(CB)=0.$$ But my problem is that I can't prove it.