$$\int^\infty_1\frac{1}{x^{1+1/x}}dx$$
I'm preparing for exams. I would also like to know what are some commonly used methods to show an improper integral diverges?
$$\int^\infty_1\frac{1}{x^{1+1/x}}dx$$
I'm preparing for exams. I would also like to know what are some commonly used methods to show an improper integral diverges?
$$ \begin{align} \int_n^\infty\frac1{x^{1+1/x}}\,\mathrm{d}x &\ge\int_n^\infty\frac1{x^{1+1/n}}\,\mathrm{d}x\\ &=nn^{-1/n} \end{align} $$ and $$ \begin{align} \lim_{n\to\infty}nn^{-1/n} &=\lim_{n\to\infty}n\lim_{n\to\infty}n^{-1/n}\\ &=\infty\cdot1 \end{align} $$
Another approach is to notice that $x^{1/x}\le e^{1/e}$.
We can expand the denominator of the integrand
\begin{align} &x^{1+1/x}=x x^{1/x}=x\exp \left( \frac{1}{x} \ln x \right)\\ =& x \cdot \left(1 + \frac{1}{x} \ln x + \frac{1}{2x^2} (\ln x)^2 + \cdots \right)\\ =& x+\ln x + \frac{1}{2x} (\ln x)^2 + O\left( \frac{(\ln x)^3}{x^2} \right) \\ =& O(x). \end{align}
Therefore, the improper integral diverges.
Hint: Consider the series $$\sum_{n=1}^{\infty}\frac{1}{n^{1+1/n}}$$
and apply the limit comparison test and the integral test.