I am trying to see if this integral converges or not, so we have $$\int_{1}^{\infty}\frac{1}{x^{1+\frac{1}{x}}}$$ Using P-Test I know if $1+\frac{1}{x}>1$, then this integral converges, but could the $x$ be negative so $1+\frac{1}{x}<1$?? then the integral diverges? Thanks
Asked
Active
Viewed 305 times
1
-
Does this improper integral converge or diverge? any ideas? – Logan Dec 10 '20 at 18:40
-
You have defined your integral over the region $x>1$ so no it cannot be negative – Henry Lee Dec 10 '20 at 18:44
1 Answers
4
The integral has form $\int_{1}^{\infty} f(x) dx$, where $\frac{1}{f(x)} = x \cdot x^{\frac{1}{x}} = x \cdot e^{\frac{\ln x}{x}} = x \cdot e^{\bar{o}(1)} \sim x$. Hence $f(x) \sim \frac1{x}$. It's well known that $\int_{1}^{\infty} \frac1{x} dx$ diverges. So the intergal $\int_{1}^{\infty} f(x) dx$ diverges also.

Botnakov N.
- 5,660