1

I am trying to see if this integral converges or not, so we have $$\int_{1}^{\infty}\frac{1}{x^{1+\frac{1}{x}}}$$ Using P-Test I know if $1+\frac{1}{x}>1$, then this integral converges, but could the $x$ be negative so $1+\frac{1}{x}<1$?? then the integral diverges? Thanks

Logan
  • 252

1 Answers1

4

The integral has form $\int_{1}^{\infty} f(x) dx$, where $\frac{1}{f(x)} = x \cdot x^{\frac{1}{x}} = x \cdot e^{\frac{\ln x}{x}} = x \cdot e^{\bar{o}(1)} \sim x$. Hence $f(x) \sim \frac1{x}$. It's well known that $\int_{1}^{\infty} \frac1{x} dx$ diverges. So the intergal $\int_{1}^{\infty} f(x) dx$ diverges also.

Botnakov N.
  • 5,660