We know how to make cross product of three dimensional vectors. $$ \vec A \times \vec B = \vec C$$
Where :
$ \vec A = (A_i; A_j; A_k)$
$ \vec B = (B_i; B_j; B_k)$
$ \vec C = (C_i; C_j; C_k)$
$C_i = \left|\begin{matrix}A_j&A_k\\B_j&B_k\end{matrix}\right|$ $C_j = \left|\begin{matrix}A_k&A_i\\B_k&B_i\end{matrix}\right|$ $C_k = \left|\begin{matrix}A_i&A_j\\B_i&B_j\end{matrix}\right|$
But what about if we have four dimensional vectors?
Is it possible to make cross product of four dimensional vectors?
If it is possible, then tell me when it can be possible?
Let say we have two vectors:
$ \vec A = (A_i; A_j; A_k; A_l)$
$ \vec B = (B_i; B_j; B_k; B_l)$
Then how to compute a cross product of this two vectors? Will it again vector? $$ \vec A \times \vec B = \vec C$$
$ \vec C = (C_i; C_j; C_k; C_l)$
Then how to compute those coordinates?
We know that only square matrices have a determinant property!
In this case it might not be correct if we will wright...
$\color{red}
{\text
{
$C_i = \left|\begin{matrix}A_j&A_k&A_l\\B_j&B_k&B_l\end{matrix}\right|$}
C_j = \left|\begin{matrix}A_k&A_i&A_l\\B_k&B_i&B_l\end{matrix}\right|
C_k = \left|\begin{matrix}A_i&A_j&A_l\\B_i&B_j&B_l\end{matrix}\right|
C_l = \left|\begin{matrix}A_i&A_j&A_k\\B_i&B_j&B_k\end{matrix}\right|}$
So tell me how to solve this problem?