Suppose for each $n$, $a_{n+1} - a_{n} = \alpha > 0$ with $\alpha$ independent of $n$ and $a_1 > 0$. Show that the series $\sum_{n=1}^{\infty}\frac{1}{a_n}$ diverges.
My solution is as such:
$$a_{n+1} - a_{n} = \alpha$$ $$\implies a_{n+1} = a_{n} +\alpha = a_{n-1}+ 2\alpha = a_{1} + n\alpha$$
Hence, $$\sum_{n=1}^{k}\frac{1}{a_n} =\frac{1}{a_1}+\frac{1}{a_2}+...\frac{1}{a_k} \\= \frac{1}{a_1}+\frac{1}{a_1+\alpha}+\frac{1}{a_1+2\alpha}...+\frac{1}{a_1+k\alpha} \\\geq \frac{1}{a_1}+\frac{1}{a_1+\alpha}+\frac{1}{2(a_1+\alpha)}...+\frac{1}{k(a_1+\alpha)}\\=\frac{1}{a_1} +\frac{1}{a_1+\alpha}(1+\frac{1}{2}+...+\frac{1}{k}) \\ = \frac{1}{a_1} +\frac{1}{a_1+\alpha}(\frac{k(k+1)}{2})\\= \frac{1}{a_1} +\frac{k(k+1)}{2(a_1+\alpha)}$$
Since $$\frac{1}{a_1} +\frac{k(k+1)}{2(a_1+\alpha)} \text{diverges.}$$
By Comparison Test, $$\sum_{n=1}^{k}\frac{1}{a_n} \text{diverges.}$$
Therefore, $$\sum_{n=1}^{\infty}\frac{1}{a_n} \text{diverges.}$$
Is it correct?