While thinking of 71432, I encountered the following integral: $$ \mathcal{I}_n = \int_0^\infty \left( 1 + \frac{x}{n}\right)^{n-1} \mathrm{e}^{-x} \, \mathrm{d} x $$ Eric's answer to the linked question implies that $\mathcal{I}_n \sim \sqrt{\frac{\pi n}{2}} + O(1)$.
How would one arrive at this asymptotic from the integral representation, without reducing the problem back to the sum ([added] i.e. expanding $(1+x/n)^{n-1}$ into series and integrating term-wise, reducing the problem back to the sum solve by Eric) ?
Thanks for reading.