Tl;dr: I tried it by “elementary methods”, it didn’t work out (at least till now) I kinda did it, though not convincing.
Applying the property you mentioned, we get $$I=\int_0^k\left(1-\frac xk\right)^k\cdot e^{\tfrac x3}dx= \int_0^k\left(\frac xk\right)^k\cdot e^{\tfrac {k-x}{3}}dx $$$$= \dfrac{e^{\tfrac k3}}{k^k}\int_0^k\left(x\right)^k\cdot e^{-\tfrac x3}dx$$ Let $-\dfrac x3=u$. Then $dx=-3du$ so that we have $$-\frac13I= \dfrac{(-3)^ke^{\tfrac k3}}{k^k}\int_{-\frac k3}^0\left(u\right)^k\cdot e^udu$$
Now I believe it would do you good to remember that $$\displaystyle \int e^u\cdot p(u) du=e^u\sum _{n=0}^k(-1)^np^{(n)}(u)+C$$ where $p(u)$ is a polynomial function and $p^{(n)}(u)$ is the $n$th derivative of $p(u)$, with $p^{(0)}(u)=p(u)$. You can actually prove this by repeated use of Integration by Parts.
Now use another formula: the $n$th derivative of $p(u)=u^k, n<k $ is $$p^{(n)}(u)=\frac{k!}{(k-n)!}u^{k-n}$$ so we get a huge expression: $$-\frac13 I= \dfrac{(-3)^ke^{\tfrac k3}}{k^k} e^u\sum _{n=0}^k(-1)^n \frac{k!}{(k-n)!}u^{k-n}\Bigg|_{-\tfrac k3}^0$$$$= \dfrac{(-3)^ke^{\tfrac k3}}{k^k} \left((-1)^kk!-e^{-\tfrac k3}\sum _{n=0}^k(-1)^n \frac{k!}{(k-n)!}\left(\frac{-k}{3}\right)^{k-n}\right) $$$$= \dfrac{3^kk!e^{\tfrac k3}}{k^k} - \dfrac{(-3)^k}{k^k} \sum _{n=0}^k(-1)^n \frac{k!}{(k-n)!}\left(\frac{-k}{3}\right)^{k-n} $$$$ =\dfrac{(3)^kk!e^{\tfrac k3}}{k^k} - \sum _{n=0}^k(-1)^n \frac{k!}{(k-n)!}\left(\frac{-k}{3}\right)^{-n} $$$$=\dfrac{3^kk!e^{\tfrac k3}}{k^k} - \sum _{n=0}^kn!\ ^kC_n \left(\frac{3}{k}\right)^{n} $$
Therefore $$I=3\left(\sum _{n=0}^kn!\ ^kC_n \left(\frac{3}{k}\right)^{n}-\dfrac{3^kk!e^{\tfrac k3}}{k^k} \right).$$ By these two posts (this and this), there exists no closed form. Also, from the comments to this question, you indeed have to evaluate the error term as k increases arbitrarily: the sum approximates the second term.
UPDATE: So $$I=3\dfrac{e^{\tfrac k3}k!}{(k/3)^k}\left(e^{-\tfrac k3}\sum _{n=0}^k\frac{(k/3)^n}{n!}-1\right).$$
Then, (special thanks to user @Ant), you can use this post and this post, you can find $$|l|=\dfrac 32.$$
I feel that this is the best one can go by using elementary methods.