The definition of algebraic number is that $\alpha$ is an algebraic number if there is a nonzero polynomial $p(x)$ in $\mathbb{Q}[x]$ such that $p(\alpha)=0$. By algebraic closure, every nonconstant polynomial with algebraic coefficients has algebraic roots; then, there will be also a nonconstant polynomial with rational coefficients that has those roots. I feel uncomfortable with the idea that the root of a polynomial with algebraic coefficients is again algebraic; why are we sure that for every polynomial in $\mathbb{\bar{Q}}[x]$ we could find a polynomial in $\mathbb{Q}[x]$ that has the same roots?
I apologize if I'm asking something really trivial or my question comes from a big misunderstanding of basic concepts.