9

How do I evaluate the following integral?

$$\int_0^1\frac{x^3 - x^2}{\ln x }\,\mathrm dx$$

Aditya Hase
  • 8,851

6 Answers6

22

Sub $x=e^{-u}$, $dx = -e^{-u} du$. Then the integral is

$$\int_0^1 dx \frac{x^3-x^2}{\log{x}} = \int_0^{\infty} du \, \frac{e^{-3 u} - e^{-4 u}}{u} = \int_0^{\infty} du \, \int_3^4 dt \, e^{-u t} \\ = \int_3^4 dt \,\int_0^{\infty} du \, e^{-u t} = \int_3^4 \frac{dt}{t} = \log{\frac{4}{3}}$$

The change in the order of integration is justified by Fubini's Theorem.

Ron Gordon
  • 138,521
11

$$ \begin{align} \int_0^1\frac{x^3-x^2}{\log(x)}\mathrm{d}x &=\int_0^1\frac{x^4-x^3}{\log(x)}\frac{\mathrm{d}x}{x}\\ &=\lim_{a\to0}\int_a^1\frac{x^4-x^3}{\log(x)}\frac{\mathrm{d}x}{x}\\ &=\lim_{a\to0}\left(\int_a^1\frac{x^4-1}{\log(x)}\frac{\mathrm{d}x}{x} -\int_a^1\frac{x^3-1}{\log(x)}\frac{\mathrm{d}x}{x}\right)\\ &=\lim_{a\to0}\left(\int_{a^4}^1\frac{x-1}{\log(x)}\frac{\mathrm{d}x}{x} -\int_{a^3}^1\frac{x-1}{\log(x)}\frac{\mathrm{d}x}{x}\right)\\ &=\lim_{a\to0}\int_{a^4}^{a^3}\frac{x-1}{\log(x)}\frac{\mathrm{d}x}{x}\\ &=\lim_{a\to0}\int_{a^4}^{a^3}\frac1{\log(x)}\mathrm{d}x -\lim_{a\to0}\int_{a^4}^{a^3}\frac1{\log(x)}\frac{\mathrm{d}x}{x}\\ &=0-\Big[\log(\log(x))\Big]_{a^4}^{a^3}\\[6pt] &=\log(4)-\log(3)\\[12pt] &=\log(4/3) \end{align} $$

robjohn
  • 345,667
  • I like how you find interesting nonstandard ways to evaluate integrals and sums. But why does $\lim_{a \to 0} \int_{a^{4}}^{a^{3}} \frac{dx}{\log x} \ dx = 0$? Is it because $\frac{1}{\log x}$ is continuous at $x=0$? – Random Variable Mar 06 '14 at 16:31
  • 1
    @RandomVariable: it is because the interval is very small, less than $a^3$ in length, and the integrand is very small on that interval, less than $\frac1{3|\log(a)|}$ in absolute value. – robjohn Mar 06 '14 at 16:36
  • My initial thought was that the integrand of the first integral is continuous on that interval while the integrand of the second integral is unbounded on that interval. That's not sufficient reasoning to conclude that the first integral goes to zero and the second integral doesn't? The integrand needs to be very small as well? – Random Variable Mar 06 '14 at 17:08
  • 1
    @RandomVariable: There are two reasons: 1. the interval is very small and the integrand is bounded; 2. the interval is bounded and the integrand is very small. Either will ensure that the integral is very small, and both are applicable here. – robjohn Mar 06 '14 at 17:34
  • My reasoning was basically the first reason (with the unnecessary addition of continuity). Thanks. – Random Variable Mar 06 '14 at 17:49
5

$$\begin{align} \int_0^1\frac{x^3-x^2}{\ln x }\mathrm{d}x &=\int_0^1\frac{x^3-1-x^2+1}{\ln x }\mathrm{d}x\tag{1}\\ &=\int_0^1\frac{x^\color{blue}{3}-1}{\ln x }\mathrm{d}x-\int_0^1\frac{x^\color{red}{2}-1}{\ln x}\mathrm{d}x\tag{2}\\ &=\ln(\color{blue}{3}+1)-\ln(\color{red}{2}+1)\tag{3}\\ &=\ln\frac43\tag{4}\\ \end{align}$$

$$\large\int_0^1\frac{x^3-x^2}{\log(x)}\mathrm{d}x=\ln\frac43$$


$\text{Explanation : } (3 )$

Consider parametric integral $\displaystyle\quad\quad\quad I(\alpha)=\int_0^1{\frac{x^{\alpha}-1}{\ln x}\mathrm dx}$

We have $I(0)=0$, By differentiating w.r.t $\alpha$ we get

$$ I'(\alpha) =\int_0^1{\frac{x^{\alpha}\ln x}{\ln x}\,\mathrm dx} =\int_0^1{x^{\alpha}\,\mathrm dx} =\frac{x^{\alpha+1}}{\alpha+1} =\frac{1}{\alpha+1}$$ Integrating w.r.t. $\alpha$ and using $I(0)=0$ we get $$I(\alpha)=\int_0^1{\frac{x^{\alpha}-1}{\ln x}\,\mathrm dx}=\ln(\alpha+1)$$

Aditya Hase
  • 8,851
3

$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\Li}[1]{\,{\rm Li}_{#1}} \newcommand{\norm}[1]{\left\vert\left\vert\, #1\,\right\vert\right\vert} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ \begin{align}&\color{#66f}{\large% \int_{0}^{1}{x^{3} - x^{2} \over \ln\pars{x}}\,\dd x} =\int_{0}^{1}\pars{x^{2} - x^{3}}\ \overbrace{\int_{0}^{\infty}x^{t}\,\dd t}^{\dsc{-\,{1 \over \ln\pars{x}}}}\ \,\dd x\ =\ \int_{0}^{\infty}\int_{0}^{1}\pars{x^{2 + t} - x^{3 + t}}\,\dd x\,\dd t \\[5mm]&=\int_{0}^{\infty}\pars{{1 \over t + 3} - {1 \over t + 4}}\,\dd t =\left.\ln\pars{t + 3 \over t + 4}\right\vert_{\, t\ =\ 0}^{\, t\ \to\ \infty} =-\ln\pars{3 \over 4}=\color{#66f}{\large\ln\pars{4 \over 3}} \end{align}

Felix Marin
  • 89,464
3

You may like this method. Note $$ \lim_{n\to\infty} n(x^{\frac{1}{n}}-1)=\ln x, \text{ for }x>0 $$ and hence \begin{eqnarray} \int_0^1\frac{x^3-x^2}{\ln x}dx&=&\int_0^1\lim_{n\to\infty}\frac{x^3-x^2}{n(x^{\frac{1}{n}}-1)}dx\\ &=&\lim_{n\to\infty}\int_0^1\frac{x^2(x-1)}{n(x^{\frac{1}{n}}-1)}dx\\ &=&\lim_{n\to\infty}\int_0^1x^2\frac{1}{n}\sum_{k=0}^{n-1}x^{\frac{k}{n}}dx\\ &=&\lim_{n\to\infty}\int_0^1\frac{1}{n}\sum_{k=0}^{n-1}x^{\frac{k}{n}+2}dx\\ &=&\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}\frac{1}{\frac{k}{n}+3}\\ &=&\int_0^1\frac{1}{x+3}dx\\ &=&\ln\frac{4}{3}. \end{eqnarray}

xpaul
  • 44,000
0

We have:

$$I = \int_{0}^{1} \frac{x^2(x - 1)}{\log(x)}$$

Consider:

$$I(b) = \int_{0}^{1} \frac{x^b(x - 1)}{\log(x)}$$

Recognize that $I(0) = \int_{0}^{1} (x-1)/\log(x) dx = \log(2)$, this is a particular solution for later.

Differentiate partially with respect to $b$

$$I'(b) = \int_{0}^{1} \frac{\log(x)\cdot x^b(x - 1)}{\log(x)} dx$$

$$I'(b) = \int_{0}^{1} \frac{x^b(x - 1)}{1} dx = \int_{0}^{1} x^b(x - 1) dx $$

$$I'(b) = \int_{0}^{1} x^{b+1} - x^b dx$$

$$I'(b) = \frac{1}{b+2} - \frac{1}{b+1}$$

Integrate this with respect to $db$

$$I(b) = \int \frac{1}{b+2} - \frac{1}{b+1} db$$

$$I(b) = \log(b+2) - \log(b+1) + C$$

$C= 0$

$$I(2) = \log(4) - \log(3) = \log(4/3)$$

Amad27
  • 10,465