Evaluation of $\displaystyle \int_{0}^{1}\frac{x^{2015}-1}{\ln x}dx\;\;$
$\bf{My\; Try::}$ Let $$I(a) = \int_{0}^{1}\frac{x^{a}-1}{\ln x}dx\;,$$ Then $$I'(a) = \int_{0}^{1}\frac{x^a\cdot \ln(x)}{\ln(x)}dx = \int_{0}^{1}x^{a}dx = \left[\frac{x^{a+1}}{a+1}\right]_{0}^{1}=\frac{1}{a+1}$$
So we get $$I(a) = \ln|a+1|+\mathcal{C}.$$
Now When $a=0\;,$ We get $I(0) =0$
So we get $I(0)=\ln(1)+\mathcal{C}\Rightarrow 0 = 0+\mathcal{C}\Rightarrow \mathcal{C}=0$
So we get $$I(a) = \int_{0}^{1}\frac{x^{a}-1}{\ln(x)}dx = \ln|a+1|$$
So $$I(2015) = \int_{0}^{1}\frac{x^{2015}-1}{\ln(x)}dx = \ln|2016|$$
can we solve it by using any other Method Like Using Double Integration.
If yes Then plz explain here, Thanks