5

I tried substituting $\ln (x)$ as $t$, but it led to no standard integral for me to move further.

Substituting $\ln (x)$ as $-t$ gives $$ \int_0^\infty\frac{e^{-t}-e^{-3t}}{t}\,\mathrm{d}t $$

robjohn
  • 345,667
Harsha G.
  • 412
  • 1
    This is what Robert Z did. Where did you get stuck? – robjohn Sep 21 '17 at 14:35
  • @robjohn because it's not an elementary integral. It's a special integral and I'm pretty sure they didn't teach me that for high school – Harsha G. Sep 21 '17 at 14:41
  • The Frullani integral only uses that $\int_0^\infty f(x),\mathrm{d}x=\lim\limits_{\epsilon\to0^+}\int_\epsilon^\infty f(x),\mathrm{d}x$ and $e^x$ is continuous at $x=0$. I will add an answer that expands on that. – robjohn Sep 21 '17 at 15:01

5 Answers5

6

In general, for $a>-1$, by letting $t=-\ln(x)$, we obtain $$\int_0^1 \frac{x^a-1}{\ln x} dx=\int_0^{+\infty} \frac{e^{-t}-e^{-(a+1)t}}{t} dt=\ln(a+1)$$ where in the last step we used a known result about Frullani's integral with $f(t)=e^{-t}$.

Robert Z
  • 145,942
5

$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} \int_{0}^{1}{x^{2} - 1 \over \ln\pars{x}}\,\dd x & = \int_{0}^{1}\pars{x + 1}\ \overbrace{{x - 1 \over \ln\pars{x}}}^{\ds{= \int_{0}^{1}x^{t}\,\dd t}}\ \,\dd x = \int_{0}^{1}\int_{0}^{1}\pars{x^{t + 1} + x^{t}}\,\dd x\,\dd t \\[5mm] & = \int_{0}^{1}\pars{{1 \over t + 2} + {1 \over t + 1}}\,\dd t = \bracks{\ln\pars{3} - \ln\pars{2}} + \ln\pars{2} \\[5mm] & = \bbx{\ln\pars{3}} \approx 1.099 \end{align}

Felix Marin
  • 89,464
4

Hint: for $a>0$, write $$f(a) = \int_0^1 \frac{x^a-1}{\ln x} dx$$ Then we can differentiate with respect to $a$ to give $f'(a) = 1/(a+1)$. Also note that $$\lim_{a\to 0^+} f(a) = 0$$ This can help you to find the integration constant.

pisco
  • 18,983
  • Hmm I have never seen this kind of method before. What is this called? We introduced a new variable.. when can I use this? – Harsha G. Sep 13 '17 at 06:02
  • It is called "differentiation under the integral", there are some examples in wikipedia. – pisco Sep 13 '17 at 06:09
  • 2
    @Harsha G. Take a look at this article Example 3.1 will be your integral. –  Sep 13 '17 at 06:13
  • read http://math.stackexchange.com/questions/1505423/evaluation-of-int-01-fracx2015-1-ln-xdx and http://math.stackexchange.com/questions/2017018/how-to-integrate-int-01-fracx7-1-logxdx and https://math.stackexchange.com/questions/2239530/using-feymanns-trick-in-advanced-integration – FDP Sep 13 '17 at 10:01
3

Expanding on Robert Z's answer, $$ \begin{align} \int_0^1\frac{x^2-1}{\log(x)}\,\mathrm{d}x &=-\int_0^\infty\frac{e^{-2x}-1}{x}\,e^{-x}\,\mathrm{d}x\\ &=\int_0^\infty\frac{1-e^{-2x}}{x}\,e^{-x}\,\mathrm{d}x\\ &=\int_0^\infty\frac{e^{-x}-e^{-3x}}{x}\,\mathrm{d}x\\ &=\lim_{\epsilon\to0^+}\int_\epsilon^\infty\frac{e^{-x}-e^{-3x}}{x}\,\mathrm{d}x\\ &=\lim_{\epsilon\to0^+}\left(\int_\epsilon^\infty\frac{e^{-x}}{x}\,\mathrm{d}x-\int_\epsilon^\infty\frac{e^{-3x}}{x}\,\mathrm{d}x\right)\\ &=\lim_{\epsilon\to0^+}\left(\int_\epsilon^\infty\frac{e^{-x}}{x}\,\mathrm{d}x-\int_{3\epsilon}^\infty\frac{e^{-x}}{x}\,\mathrm{d}x\right)\\ &=\lim_{\epsilon\to0^+}\int_\epsilon^{3\epsilon}\frac{e^{-x}}{x}\,\mathrm{d}x\\ &=\lim_{\epsilon\to0^+}\int_1^3\frac{e^{-\epsilon x}}{x}\,\mathrm{d}x\\ &=\lim_{\epsilon\to0^+}\int_1^3\left(\frac1x+\frac{o(\epsilon)}x\right)\,\mathrm{d}x\\ &=\lim_{\epsilon\to0^+}\left(\int_1^3\frac1x\,\mathrm{d}x+o(\epsilon)\right)\\ &=\int_1^3\frac1x\,\mathrm{d}x\\[9pt] &=\log(3) \end{align} $$

robjohn
  • 345,667
2

The antiderivative is not elementary: $F(x) = \text{Ei}(1, -\ln(x)) - \text{Ei}(1,-3 \ln(x))$, where $$\text{Ei}(1,z) = \int_1^\infty e^{-tz} t^{-1}\; dt $$

As $x \to 0+$, $-\ln(x) \to +\infty$ and both $\text{Ei}(1, -\ln(x))$ and $\text{Ei}(1,-3 \ln(x))$ go to $0$. As $x \to 1-$, both $\text{Ei}(1,-\ln(x))$ and $\text{Ei}(1,-3 \ln(x)) \to \infty$, but $$\text{Ei}(1, 1/s) \sim \ln(s) -\gamma + O(1/s)$$ resulting in $\text{Ei}(1,-\ln(x)) - \text{Ei}(1,-3 \ln(x)) = \ln(3) + O(\ln(x))$. Thus the answer is $\ln(3)$.

Robert Israel
  • 448,999