I need to prove that:
If $\gcd(a,b)=1$, then $\gcd(a+b,ab)=1.$
So far I used what's given so I have:
$ax+by=1$ (I wrote the gcd of a and b as a linear combination)
and
$(a+b)u+ab(v)=1$ (I also wrote this as a linear combination)
where do I go from here?