If $\gcd(a,b) =1$. Why does $\gcd(a+b,ab)=1$ ?
I know that if $\gcd(a,b)=1$ then there exists $u$ and $v$ where $au+bv=1$. But I can't seem to relate it to $a+b$ and $ab$.
If $\gcd(a,b) =1$. Why does $\gcd(a+b,ab)=1$ ?
I know that if $\gcd(a,b)=1$ then there exists $u$ and $v$ where $au+bv=1$. But I can't seem to relate it to $a+b$ and $ab$.
If $(a,b)=1$, Bezout's Identity says there are $x,y$ so that $ax+by=1$. Then $$ (a^2x+b^2y)(\color{#C00000}{x+y})-(a-b)^2\color{#C00000}{xy}=(ax+by)^2=1 $$ Therefore, $(x+y,xy)=1$.
Hint: $a(a+b) - ab = a^2$ and $b(a+b) - ab = b^2$ so that $\mathrm{gcd}(a+b, ab)$ divides $a^2$ and $b^2$.
Since $ab-a(a+b) =-a^2 $ and $ab-b(a+b) =-b^2 $, if $d$ divides both $ab$ and $a+b$, then $d$ divides both $a^2$ and $b^2$.
Since $(a, b) = 1$, $(a^2, b^2) = 1$, so $d = 1$.
Here is a direct proof for those who enjoy Bezout fiddling.
$\quad \begin{align} \gcd(a,b)=1\ \Rightarrow\ 1 &=\, j a + k b\quad\text{for some }\ j,k\in\Bbb Z\\ &=\, (j\!-\!k)a + k(a+b)\\ &=\, (k\!-\!j)b + j(a+b),\ \ \ \text{so multiplying this with above}\\ \Rightarrow\ 1 &=\quad\, m\,ab + n (a+b)\ \ \ \text{for some }\ m,n\in\Bbb Z \\ \Rightarrow\ 1 &=\ \gcd (ab,\ a+b) \end{align}$
Remark $\ $ Using gcd laws eliminates the obfuscatory Bezout coefficients
$$ (a,c)(b,c) = (ab,c(a,b,c)) = (ab,c)\ \ {\rm if}\ \ (a,b,c) = 1\qquad$$
Yours is the special case $\ c = a+b,\ $ and $\ (a,b)=1\ \,(\Rightarrow\, (a,b,c)=1)$
Hint $\ $ By here: $\ (c,a)=1=(c,b)\,\Rightarrow\, (c,ab)=1.\ $ Let $\ c = a+b.$
Remark $\ $ More generally $\ (a\!+\!b,\, {\rm lcm}(a,b))\, =\, (a,b).\,$ See here for a few proofs.