Consider $2$ numbers $x,y$ such that $\frac{x+y}{lcm(x,y)}=\frac{7}{12}$, and it is given that hcf(x,y) is $4$.
How to find $\mathbf{x,y}$.
I have tried the question like this. \begin{align*} \frac{x + y}{(x\cdot y)/4} \Rightarrow \frac{4(x+y)}{x\cdot y} &= \frac{7}{12}\\ 48x+ 48y &= 7xy\\ 48x &= 7xy-48y\\ 48x &= y\cdot(7x-48)\\ y &= \frac{48\cdot x}{7x-48}\\ \end{align*}
As $y$ is a positive number the denominator have to be $<0$, so $x \ge 7$. Now If I put $x =7$ I get $y = \frac{48\cdot 7}{49-48} = 336$. But
lcm(7,336) is 336 and $\frac{7+336}{336} \neq \frac{7}{12}$. Where am I making mistake? the hcf is not 4 for (7,336)
second method I Tried was, $x = 4a, y =4b.$ now ,
\begin{align*} \frac{4a + 4b}{4\cdot a\cdot b} &= \frac{7}{12} \\ \frac{a+b}{a\cdot b} &= \frac{7}{12} \\ \frac{a+b}{a\cdot b} &= \frac{7}{12} \\ \frac{1}{a}+\frac{1}{b} &= \frac{7}{12}\\ \frac{1}{a} &= \frac{7}{12} - \frac{1}{b}\\ \frac{1}{a} &= \frac{7b-12}{12b}\\ or\\ a &= \frac{12b}{7b-12} \end{align*}
so $b\ge 2$ to get an integer, now for $b=2, a= 12. \Rightarrow x=48, y=4$, also if I choose b=2, the hcf is not 4, so if I put $b=3, a = 4 \Rightarrow (12, 16)$ , here the hcf and lcm are, $4$ and $48$ respectively.and $\frac{12+16}{48} = \frac{7}{12}$.
What is the mistake I am making. ?