The way you have transformed the integral $I$ is an important step to finding the solution. Using @shobhit.iands's substitution I managed to expand the integrand into two partial fractions whose denominator is a quadratic polynomial. Let $J$ denote
\begin{equation*}
J=2I=\int_{0}^{1}\frac{\arcsin \sqrt{x}+\arcsin \sqrt{1-x}}{x^{4}-2x^{3}+2x^{2}-x+1}dx.\tag{1}
\end{equation*}
For $0\leq x\leq 1$ we have
\begin{equation*}
\arcsin \sqrt{x}+\arcsin \sqrt{1-x}=\frac{\pi }{2}.\tag{2}
\end{equation*}
So
\begin{eqnarray*}
J &=&\frac{\pi }{2}\int_{0}^{1}\frac{1}{x^{4}-2x^{3}+2x^{2}-x+1}dx, \\
&=&8\pi \int_{-1/2}^{1/2}\frac{1}{16u^{4}+8u^{2}+13}\,du,\qquad u=x-\frac{1}{
2} \\
&=&16\pi \int_{0}^{1/2}\frac{1}{16u^{4}+8u^{2}+13}\,du.\tag{3}
\end{eqnarray*}
The polynomial in the denominator can be factored as follows
\begin{eqnarray*}
16u^{4}+8u^{2}+13 &=&16\left[ \left( u-u_{1}\right) (u-u_{2})\right] \left[
\left( u-u_{3}\right) (u-u_{4})\right] \\
&=&\left[ 4\left( u-u_{1}\right) (u-u_{2})\right] \left[ 4\left(
u-u_{3}\right) (u-u_{4})\right] ,
\end{eqnarray*}
where $u_{k},k=1,2,3,4$, are its roots
\begin{eqnarray*}
u_{1} &=&\frac{1}{2}\sqrt{-1+i\sqrt{12}},u_{3}=-\frac{1}{2}\sqrt{-1+i\sqrt{12}} \\
u_{2} &=&\frac{1}{2}\sqrt{-1-i\sqrt{12}},u_{4}=-\frac{1}{2}\sqrt{-1-i\sqrt{12}}.
\end{eqnarray*}
Since
\begin{eqnarray*}
4\left( u-u_{1}\right) (u-u_{2}) &=&4u^{2}-2\sqrt{-2+2\sqrt{13}}u+\sqrt{13}
\\
4\left( u-u_{3}\right) (u-u_{4}) &=&4u^{2}+2\sqrt{-2+2\sqrt{13}}u+\sqrt{13},
\end{eqnarray*}
we obtain
\begin{equation*}
16u^{4}+8u^{2}+13=(4u^{2}-2\sqrt{-2+2\sqrt{13}}u+\sqrt{13})(4u^{2}+2\sqrt{
-2+2\sqrt{13}}u+\sqrt{13})
\end{equation*}
and are thus able to expand the integrand into partial fractions
\begin{eqnarray*}
\frac{1}{16u^{4}+8u^{2}+13} &=&\frac{1}{(4u^{2}-2\sqrt{-2+2\sqrt{13}}u+\sqrt{
13})(4u^{2}+2\sqrt{-2+2\sqrt{13}}u+\sqrt{13})} \\
&=&-\frac{1}{312}\frac{\sqrt{-2+2\sqrt{13}}(\sqrt{13}+13)u-12\sqrt{13}}{
4u^{2}-2\sqrt{-2+2\sqrt{13}}u+\sqrt{13}} \\
&&+\frac{1}{312}\frac{\sqrt{-2+2\sqrt{13}}(\sqrt{13}+13)u+12\sqrt{13}}{
4u^{2}+2\sqrt{-2+2\sqrt{13}}u+\sqrt{13}}.
\end{eqnarray*}
Hence
\begin{eqnarray*}
J &=&-\frac{2\pi }{39}\int_{0}^{1/2}\frac{\sqrt{-2+2\sqrt{13}}(\sqrt{13}
+13)u-12\sqrt{13}}{4u^{2}-2\sqrt{-2+2\sqrt{13}}u+\sqrt{13}}\,du \\
&&+\frac{2\pi }{39}\int_{0}^{1/2}\frac{\sqrt{-2+2\sqrt{13}}(\sqrt{13}+13)u+12
\sqrt{13}}{4u^{2}+2\sqrt{-2+2\sqrt{13}}u+\sqrt{13}}\,du.\tag{4}
\end{eqnarray*}
In this way we have reduced the evaluation of $J$ to the evaluation (see this entry of Wikipedia ) of two integrals of rational functions of the form
\begin{equation*}
\int_{0}^{1/2}\frac{mu+n}{au^{2}+bu+c}du=\left. \frac{m}{2a}\ln \left\vert
au^{2}+bu+c\right\vert +\frac{2an-bm}{a\sqrt{4ac-b^{2}}}\arctan \frac{2au+b}{
\sqrt{4ac-b^{2}}}\right\vert _{0}^{1/2},
\end{equation*}
where
\begin{equation*}
4ac-b^{2}=4\times 4\times \sqrt{13}-(2\sqrt{-2+2\sqrt{13}})^{2}=8\sqrt{13}
+8>0.
\end{equation*}
ADDED. I've got
\begin{eqnarray*}
I =\frac{J}{2}&=&\frac{\sqrt{-2+2\sqrt{13}}\left( \sqrt{13}+13\right) \pi }{
312}\ln \frac{1+\sqrt{-2+2\sqrt{13}}+\sqrt{13}}{1-\sqrt{-2+2\sqrt{13}}+\sqrt{
13}} \\
&&-\frac{2\left( -2+2\sqrt{13}\right) \left( \sqrt{13}+13\right) \pi }{312
\sqrt{2+2\sqrt{13}}}\arctan \frac{12}{\sqrt{2+2\sqrt{13}}\left( -7+\sqrt{13}
\right) }\tag{5} \\
&\approx &0.90952.
\end{eqnarray*}