Prove this inequality for all reals $x$ and $y$:
$$|x-y|≥|x|-|y|$$
By the triangle inequality,
$$\begin{align}|x| &= |(x-y) + y|\\ &\le |x-y| + |y|\end{align}$$
Rearrange the terms to get $|x-y| \ge |x| - |y|$.