If $h$ and $k$ are any two distinct integers, then $h^n-k^n$ is divisible by $h-k$.
Let's start with the basis. Let $n=1$, then $h^1-k^1 = h-k$
Now for the induction, I can't use $k$ because I don't want to be confused. So let $P(r)$ for $h^n-k^n$ and that's $h^r-k^r$
$h^r-k^r = h-k$
$h^r = h-k +k^r$
So, for $P(r+1)$
$h^{r+1}-k^{r+1}$
$h^r * h^1 - k^r * k^1$
$ (h-k +k^r) * h -k^r *k $
This is the point where I'm not certain if I should distribute the $h $ all over the place...so here it is
$ (h*h-k*h +k^r*h) -k^r *k $
$ (h*h)+(-k*h) +(k^r*h) -k^r *k $
$ (h)*(h-k) + (k^r)*(h-k)$
$(h-k) * (h+k^r)$