for any symmetric real matrix $S$, the following eigendecomposition exists:
$$ S = Q \Lambda Q^{\top} $$
where $Q$ is a unitary matrix, consisting of the eigenvectors of $S$ wikipedia . By definition of unitary, we have $Q^{\top}Q=QQ^{\top}=I$. Given an orthonormal set of eigenvectors, $Q^{\top}Q=I$, is trivial. How can one show $QQ^{\top}=I$ ?