Detailing Srivatsan Narayanan's solution. It is known that the functional
equation of the gamma function may be derived applying the integration by
parts technique. Its value at $1/2$ may be evaluated by computing a double
integral over the first quadrant in Cartesian and polar coordinates. Let's
apply similar ideas in this case. Let $f(x)=x^{2}e^{-x^{2}}$. Since $
f(-x)=f(x)$ the integral $\int_{-\infty }^{\infty }f(x)\mathrm{d}x=2\int_{0}^{\infty
}f(x)\mathrm{d}x$. Integrating by parts
$$
\int x^{2}e^{-x^{2}}\mathrm{d}x=\int x\cdot xe^{-x^{2}}\mathrm{d}x,
$$
since
$$
\int xe^{-x^{2}}\mathrm{d}x=-\frac{1}{2}e^{-x^{2}}
$$
and $\frac{dx}{dx}=1$, we get
$$\begin{eqnarray*}
\int x^{2}e^{-x^{2}}\mathrm{d}x &=&x\left( -\frac{1}{2}e^{-x^{2}}\right) -\int -\frac{
1}{2}e^{-x^{2}}\,\mathrm{d}x \\
&=&-\frac{1}{2}xe^{-x^{2}}+\frac{1}{2}\int e^{-x^{2}}\,\mathrm{d}x.\tag{0}
\end{eqnarray*}$$
And so,
$$\begin{eqnarray*}
\int_{0}^{\infty }x^{2}e^{-x^{2}}dx &=&\left. -\frac{1}{2}
xe^{-x^{2}}\right\vert _{0}^{\infty }+\frac{1}{2}\int_{0}^{\infty
}e^{-x^{2}}\,\mathrm{d}x \\
&=&\left( \lim_{c\rightarrow \infty }-\frac{1}{2}ce^{-c^{2}}\right) +\frac{1
}{2}0e^{-0^{2}}+\frac{1}{2}\int_{0}^{\infty }e^{-x^{2}}\,\mathrm{d}x \\
&=&0+0+\frac{1}{2}\int_{0}^{\infty }e^{-x^{2}}\,\mathrm{d}x \\
&=&\frac{1}{2}\int_{0}^{\infty }e^{-x^{2}}\,\mathrm{d}x.\tag{1}
\end{eqnarray*}$$
Consequently,
$$
I:=\int_{-\infty }^{\infty }x^{2}e^{-x^{2}}\mathrm{d}x=2\int_{0}^{\infty
}x^{2}e^{-x^{2}}\mathrm{d}x=\int_{0}^{\infty }e^{-x^{2}}\,\mathrm{d}x.\tag{2}
$$
To evaluate this last integral we compute the following double integral in
Cartesian and polar coordinates ($r^{2}=x^{2}+y^{2}$, $x=r\cos \theta
,y=r\sin \theta $). Since the Jacobian of the transformation $\frac{\partial
(x,y)}{\partial (r,\theta )}=r$, we have
$$
\int_{x=0}^{\infty }\int_{y=0}^{\infty }e^{-x^{2}-y^{2}}\mathrm{d}x\mathrm{d}y=\int_{\theta
=0}^{\pi /2}\int_{r=0}^{\infty }e^{-r^{2}}r\mathrm{d}r\mathrm{d}\theta.\tag{3}
$$
Comparing the LHS
$$
\int_{x=0}^{\infty }\int_{y=0}^{\infty }e^{-x^{2}-y^{2}}\mathrm{d}x\mathrm{d}y=\left(
\int_{0}^{\infty }e^{-x^{2}}\mathrm{d}x\right) \left( \int_{0}^{\infty
}e^{-y^{2}}\mathrm{d}y\right) =I^{2}\tag{4}
$$
with the RHS
$$\begin{eqnarray*}
I^2 &=&\int_{\theta =0}^{\pi /2}\int_{r=0}^{\infty }e^{-r^{2}}r\mathrm{d}r\mathrm{d}\theta =
\frac{\pi }{2}\int_{0}^{\infty }e^{-r^{2}}r\mathrm{d}r \\
&=&\frac{\pi }{2}\left. \left( -\frac{1}{2}e^{-r^{2}}\right) \right\vert
_{0}^{\infty }=\frac{\pi }{2}\left( \lim_{c\rightarrow \infty }-\frac{1}{2}
e^{-c^{2}}+\frac{1}{2}e^{-0^{2}}\right) \\
&=&\frac{\pi }{2}\left( 0+\frac{1}{2}\right) =\frac{\pi }{4},\tag{5}
\end{eqnarray*}$$
yields
$$
I=\frac{\sqrt{\pi }}{2}.\tag{6}
$$