While solving a more general problem, I came across the following integral
$$I= \int_{-\infty}^{\infty} x^{4n} e^{-x^2/2} \, dx$$
To start off, I defined $t:=x^2/2$ to get
\begin{align*} I= \int_{-\infty}^\infty x^{4n} e^{-x^2/2} \, dx &= 2\int_0^\infty x^{4n} e^{-x^2/2} \, dx \\ &= 2 \int_0^\infty (\sqrt{2t})^{4n} e^{-t} \frac{dt}{\sqrt{2t}} \\ &= 2 (\sqrt{2})^{4n - 1} \int_0^\infty t^{2n - 1/2} e^{-t} \, dt \end{align*}
This seems to be a gamma function integral. I would start integrating by parts
\begin{align*} \int_0^{+\infty} t^{2n-\frac{1}{2}}e^{-t} \, dt&=[ -t^{2n-\frac{1}{2}}e^{-t}]_0^{+\infty} - (-)(2n-\frac{1}{2})\int_0^{+\infty}t^{2n-\frac{1}{2}-1}e^{-t} \, dt \\ &=(2n-\frac{1}{2})\int_0^{+\infty}t^{2n-\frac{1}{2}-1}e^{-t} \, dt \end{align*}
But how to proceed further?
I looked up in a table and the result should be
$$I=2 (\sqrt{2})^{4n - 1} \Gamma\left(2n+ \frac 1 2 \right)$$
PS: Alternative methods avoiding the gamma function are very welcomed! :)
EDIT: I think that what Yves suggested was the following
$$I= \int_{-\infty}^\infty x^{4n} e^{-x^2/2}= (2n-\frac{1}{2}) (2n-\frac{3}{2}) (2n-\frac{5}{2})\cdots\frac{3}{2}\frac{1}{2} \int_0^{+\infty}t^{-\frac{1}{2}}e^{-t}\,dt=(2n-\frac{1}{2}) (2n-\frac{3}{2}) (2n-\frac{5}{2})\cdots\frac{3}{2}\frac{1}{2}\ \ 2\int_0^{+\infty}e^{-t} \, d(\sqrt{t})$$
Alrigtht! I see that $(2n-\frac{1}{2}) (2n-\frac{3}{2}) (2n-\frac{5}{2})\cdots\frac{3}{2}\frac{1}{2} = \Gamma\left(2n+ \frac 1 2 \right)$ NAIVE question though: how to see that $\int_0^{+\infty}e^{-t} \, d(\sqrt{t})=2 (\sqrt{2})^{4n - 1}$?