Consider $S^n$ as the unit sphere centred at zero in $\mathbb{R}^{n+1}$. We can use Proposition $15.21$ of Lee's Introduction to Smooth Manifolds (second edition), paraphrased below, to construct an orientation form on $S^n$.
Proposition $15.21$: Suppose $M$ is an oriented smooth $n$-manifold, $S$ an immersed hypersurface in $M$, and $N$ is a vector field along $S$ that is nowhere tangent to $S$. Then $S$ has a unique orientation such that for each $p \in S$, $(E_1, \dots, E_{n-1})$ is an oriented basis for $T_pS$ if and only if $(N_p, E_1, \dots, E_{n-1})$ is an oriented basis for $T_pM$. If $\omega$ is an orientation form for $M$, then $\alpha = (i_N\omega)|_S$ is an orientation form for $S$ with respect to this orientation.
In our case, $M = \mathbb{R}^{n+1}$, $S = S^n$, $\omega = dx^1\wedge\dots\wedge dx^{n+1}$ and $N$ is the vector field given by
$$N(x) = \sum_{i=1}^{n+1}x_i\frac{\partial}{\partial x^i}.$$
Using formula $(14.12)$ in Lee, we have
\begin{align*}
\alpha = (i_N\omega)|_{S^n} &= \left.\sum_{j=1}^{n+1}(-1)^{j-1}dx^j(N)dx^1\wedge\dots\wedge dx^{j-1}\wedge dx^{j+1}\wedge\dots\wedge dx^{n+1}\right|_{S^n}\\
&= \left.\sum_{j=1}^{n+1}(-1)^{j-1}dx^j\left(\sum_{i=0}^{n+1}x_i\frac{\partial}{\partial x^i}\right)dx^1\wedge\dots\wedge dx^{j-1}\wedge dx^{j+1}\wedge\dots\wedge dx^{n+1}\right|_{S^n}\\
&= \left.\sum_{j=1}^{n+1}(-1)^{j-1}x^jdx^1\wedge\dots\wedge dx^{j-1}\wedge dx^{j+1}\wedge\dots\wedge dx^{n+1}\right|_{S^n}.
\end{align*}
Now that we have $\alpha$, we can prove the following result.
Proposition: The antipodal map on $S^n$ has degree $(-1)^{n+1}$.
Proof: Let $f$ be the antipodal map on $S^n$. Then we have
\begin{align*}
f^*\alpha &= \left.\sum_{j=1}^{n+1}(-1)^{j-1}(-x^j)d(-x^1)\wedge\dots\wedge d(-x^{j-1})\wedge d(-x^{j+1})\wedge\dots\wedge d(-x^{n+1})\right|_{S^n}\\
&= \left.\sum_{j=1}^{n+1}(-1)^{j-1}(-x^j)(-dx^1)\wedge\dots\wedge (-dx^{j-1})\wedge (-dx^{j+1})\wedge\dots\wedge (-dx^{n+1})\right|_{S^n}\\
&= (-1)^{n+1}\left.\sum_{j=1}^{n+1}(-1)^{j-1}x^jdx^1\wedge\dots\wedge dx^{j-1}\wedge dx^{j+1}\wedge\dots\wedge dx^{n+1}\right|_{S^n}\\
&= (-1)^{n+1}\alpha.
\end{align*}
Therefore, $f$ has degree $(-1)^{n+1}$.
In particular, the antipodal map $S^2 \to S^2$ has degree $(-1)^{2+1} = (-1)^3 = -1$.