I have to check whether the following expression converges; if yes I have to give the limit.
$$\lim_{x\rightarrow\infty} \sqrt{4x+x^2}- \sqrt{x^2+x}$$
Now I did the following:
$$\lim_{x\rightarrow\infty} \sqrt{4x+x^2}- \sqrt{x^2+x}$$ $$\lim_{x\rightarrow\infty} x\sqrt{\frac{4}{x}+1}- x\sqrt{1+\frac{1}{x}}$$ $$\lim_{x\rightarrow\infty} x \lim_{x\rightarrow\infty}(\sqrt{\frac{4}{x}+1}- \sqrt{1+\frac{1}{x}})$$
That confuses me. The left limit approaches $\infty$ while the right approaches $0$. What is wrong here or what can I conclude from that?
Thank you very muvh for your help in advance!
FunkyPeanut