Let $f:(0,\infty) \to R$ be differentiable. Suppose that $\lim_{x\to\infty}(f(x)+f'(x))=L$. Show that $\lim_{x\to\infty} f(x) = L$ and $\lim_{x\to\infty} f'(x) = 0$. (Hint: Write $f(x) = e^xf(x)/e^x$ and use l’Hopital’s Rule.)
My working for $\lim_{x\to\infty}f'(x)=0$:
For $\lim_{x\to\infty}f'(x) = 0$, I let $f(x) = e^xf(x)/e^x$ and applied quotient rule which then cancels off $e^{2x}$ and I'm left with $\lim_{x\to\infty}(f(x)+f'(x)-f(x))$. Can I then equate this with $\lim_{x\to\infty} \left(f(x)+f'(x)\right) - \lim_{x\to\infty}f(x)$ which then gives $L-L=0$? Is this step correct?
$\theta$
for $\theta$). Also, please show your working so far :) – Shaun Jan 23 '14 at 11:50