Remark: I proved the second inequality. Maybe the first inequality can be proved in similar way. I have not yet tried it. I used Maple software.
Let us prove that
$$\sqrt[n+1]{(n+1)!} - \sqrt[n]{n!} < \Big(\frac{n}{n+1}\Big)^n, \quad \forall n\ge 1.$$
We first introduce some auxiliary results (Facts 1 through 6) used to prove the inequality.
Fact 1: For all integers $n\ge 1$, we have
\begin{align}
\sqrt[n]{n!} &> \sqrt[2n]{\pi}\, \frac{n}{\mathrm{e}} \sqrt[6n]{8n^3 + 4n^2 + n + \frac{1}{100}}, \\
\sqrt[n]{n!} &< \sqrt[2n]{\pi}\, \frac{n}{\mathrm{e}} \sqrt[6n]{8n^3 + 4n^2 + n + \frac{1}{30}}, \\
\sqrt[n+1]{(n+1)!} &< \sqrt[2n+2]{\pi}\, \frac{n+1}{\mathrm{e}} \sqrt[6n+6]{8n^3 + 28n^2 + 33n + \frac{391}{30}}.
\end{align}
See: G. E. Andrews and B. C. Berndt, Ramanujan's Lost Notebook Part IV, 2013, page 111.
Fact 2: For all integers $n\ge 1$, we have
$$\ln \Big(8n^3 + 28n^2 + 33n + \frac{391}{30}\Big) - \ln \Big(8n^3 + 4n^2 + n + \frac{1}{100}\Big)
< \frac{3}{n} - \frac{2}{n^2} + \frac{3607}{2400n^3}.$$
The proof is simple and thus omitted.
Fact 3: For all integers $n\ge 1$, we have
$$\ln (8n^3 + 4n^2 + n + \frac{1}{100})
> 3\ln 2 + 3\ln n + \frac{1}{2n} - \frac{47}{2400n^3}.$$
The proof is simple and thus omitted.
Fact 4: For all integers $n\ge 1$, we have
$$\ln (8n^3 + 4n^2 + n + \frac{1}{30}) < 3\ln 2 + 3\ln n + \frac{1}{2n}.$$
The proof is simple and thus omitted.
Fact 5: For all integers $n\ge 1$, we have
$$n\ln n - n \ln (n+1) > -1 + \frac{1}{2n} - \frac{1}{3n^2}.$$
The proof is simple and thus omitted.
Fact 6: For all integers $n\ge 1$, we have
$$\sqrt[n+1]{(n+1)!} < \Big(1 + \frac{1}{n} - \frac{\ln n + \ln 2\pi - 1}{2n^2}\Big)\sqrt[n]{n!}.$$
The proof is given later.
$\phantom{2}$
Now let us begin. If $1 \le n\le 5$, the inequality is verified directly. In the following, we assume that $n \ge 6$.
According to Fact 6, it suffices to prove that
$$\Big(\frac{1}{n} - \frac{\ln n + \ln 2\pi - 1}{2n^2}\Big)\sqrt[n]{n!}
< (\frac{n}{n+1})^n.$$
According to Fact 1, it suffices to prove that
\begin{align}
&\ln \Big(\frac{1}{n} - \frac{\ln n + \ln 2\pi - 1}{2n^2}\Big)
+ \frac{1}{2n}\ln \pi + \ln n - 1 + \frac{1}{6n}\ln (8n^3 + 4n^2 + n + \frac{1}{30})\\
<\ & n\ln n - n \ln (n+1).
\end{align}
According to Fact 4 and 5, it suffices to prove that
\begin{align}
&\ln \Big(\frac{1}{n} - \frac{\ln n + \ln 2\pi - 1}{2n^2}\Big)
+ \frac{1}{2n}\ln \pi + \ln n - 1 + \frac{1}{6n}(3\ln 2 + 3\ln n + \frac{1}{2n})\\
<\ & -1 + \frac{1}{2n} - \frac{1}{3n^2}.
\end{align}
Let
\begin{align}
G(x) &= -1 + \frac{1}{2x} - \frac{1}{3x^2} - \ln \Big(\frac{1}{x} - \frac{\ln x + \ln 2\pi - 1}{2x^2}\Big)\\
&\quad - \Big(\frac{1}{2x}\ln \pi + \ln x - 1 + \frac{1}{6x}(3\ln 2 + 3\ln x + \frac{1}{2x})\Big).
\end{align}
We have
$$G'(x) = \frac{1}{6x^3(2x - \ln x - \ln 2\pi + 1)}(p_2(\ln x)^2 + p_1 \ln x + p_0)$$
where
\begin{align}
p_2 &= -3x, \\
p_1 &= -(6\ln 2\pi - 9)x - 5, \\
p_0 &= (-3\ln^2 2\pi + 9\ln 2\pi +4)x + 5 - 5\ln 2\pi.
\end{align}
Clearly, $p_2, p_1 < 0$ for $x \ge 1$. Since $\ln x > \frac{2(x-1)}{x+1}$ for $x > 1$, we have
$$p_2(\ln x)^2 + p_1 \ln x + p_0 < p_2\Big(\frac{2(x-1)}{x+1}\Big)^2 + p_1\frac{2(x-1)}{x+1} + p_0,
\quad \forall x \ge 6.$$
It is easy to prove that
$$p_2\Big(\frac{2(x-1)}{x+1}\Big)^2 + p_1\frac{2(x-1)}{x+1} + p_0 < 0, \quad \forall x \ge 6.$$
Thus, $G'(x) < 0$ for $x\ge 6$. Note also that $\lim_{x\to \infty} G(x) = 0$.
Thus, we have $G(x) > 0$ for $x\ge 6$. This completes the proof.
$\phantom{2}$
Proof of Fact 6: If $1 \le n\le 3$, the inequality is verified directly. In the following, we assume that $n \ge 4$.
We need to prove that
\begin{align}
\ln \sqrt[n+1]{(n+1)!}
< \ln \sqrt[n]{n!} + \ln \Big(1 + \frac{1}{n} - \frac{\ln n + \ln 2\pi - 1}{2n^2}\Big).
\end{align}
According to Fact 1, it suffices to prove that
\begin{align}
&\frac{1}{2n+2}\ln \pi + \ln (n+1) - 1 + \frac{1}{6n+6}\ln (8n^3 + 28n^2 + 33n + \frac{391}{30})\\
< \ & \frac{1}{2n}\ln \pi + \ln n - 1 + \frac{1}{6n}\ln (8n^3 + 4n^2 + n + \frac{1}{100})\\
&\quad + \ln \Big(1 + \frac{1}{n} - \frac{\ln n + \ln 2\pi - 1}{2n^2}\Big)
\end{align}
or
\begin{align}
& \frac{1}{6n+6}\Big(\ln (8n^3 + 28n^2 + 33n + \frac{391}{30}) - \ln (8n^3 + 4n^2 + n + \frac{1}{100})\Big)\\
< \ & \frac{1}{2n(n+1)}\ln \pi + \frac{1}{6n(n+1)}\ln (8n^3 + 4n^2 + n + \frac{1}{100})\\
&\quad + \ln \Big(1 - \frac{\ln n + \ln 2\pi - 1}{2n(n+1)}\Big).
\end{align}
According to Fact 2 and 3, it suffices to prove that
\begin{align}
& \frac{1}{6n+6}\Big(\frac{3}{n} - \frac{2}{n^2} + \frac{3607}{2400n^3}\Big)\\
< \ & \frac{1}{2n(n+1)}\ln \pi + \frac{1}{6n(n+1)}
\Big(3\ln 2 + 3\ln n + \frac{1}{2n} - \frac{47}{2400n^3}\Big)\\
&\quad + \ln \Big(1 - \frac{\ln n + \ln 2\pi - 1}{2n(n+1)}\Big).
\end{align}
Let
\begin{align}
F(x) &= \frac{1}{2x(x+1)}\ln \pi + \frac{1}{6x(x+1)}\Big(3\ln 2 + 3\ln x + \frac{1}{2x} - \frac{47}{2400x^3}\Big)\\
&\quad + \ln \Big(1 - \frac{\ln x + \ln 2\pi - 1}{2x(x+1)}\Big)
- \frac{1}{6x+6}\Big(\frac{3}{x} - \frac{2}{x^2} + \frac{3607}{2400x^3}\Big).
\end{align}
We have
$$F'(x) = \frac{1}{3600x^5(x+1)^2(2x^2-\ln x - \ln 2\pi + 2x+1)}(q_2(\ln x)^2 + q_1\ln x + q_0)$$
where
\begin{align}
q_2 &= 3600x^4+1800x^3, \\
q_1 &= (7200\ln 2\pi - 9000)x^4 + (3600\ln 2\pi - 900)x^3 - 607x^2 - 2764x - 47, \\
q_0 &= -9000x^5 + (3600\ln^2 2\pi - 9000\ln 2\pi -2386)x^4
+(1800\ln^2 2\pi - 900\ln 2\pi+5842)x^3\\
&\quad +(-607\ln 2\pi + 6229)x^2 + (-2764\ln 2\pi + 2858)x - 47\ln 2\pi +47.
\end{align}
It is easy to prove that $q_2, q_1 > 0$ for $x\ge 1$.
Since $x > \ln^2 x$ and $x > \ln x$ for $x\ge 1$, we have
$$q_2(\ln x)^2 + q_1\ln x + q_0 < q_2 x + q_1 x + q_0, \quad \forall x\ge 4.$$
It is easy to prove that $q_2 x + q_1 x + q_0 < 0$ for $x \ge 4$.
Thus, we have $F'(x) < 0$ for $x\ge 4$. Note also that $\lim_{x\to \infty} F(x) = 0$. Thus, we have $F(x) > 0$ for $x \ge 4$.
This completes the proof of Fact 6.