$$z^7=1=e^{2n\pi i}$$ where $n$ is any integer
$$\implies z=e^{\frac{2n\pi i}7}$$ where $n=0,\pm1,\pm2,\pm3$
So, the roots of $$\frac{z^7-1}{z-1}=0\iff z^6+z^5+\cdots+z+1=0\quad(1)$$ are $e^{\frac{2n\pi i}7}$ where $n=\pm1,\pm2,\pm3$
As $z\ne0,$ divide either sides by $z^3$ to get $$z^3+\frac1{z^3}+z^2+\frac1{z^2}+z+\frac1z+1=0\quad(2)$$
Now using Euler Formula, $\displaystyle z+\frac1z=e^{\frac{2n\pi i}7}+e^{-\frac{2n\pi i}7}=2\cos\frac{2n\pi }7$ where $n=1,2,3$
Again, $$\displaystyle z^2+\frac1{z^2}=\left(z+\frac1z\right)^2-2\text{ and }z^3+\frac1{z^3}=\left(z+\frac1z\right)^3-3\left(z+\frac1z\right)$$
Put the values of $\displaystyle z^2+\frac1{z^2},z^3+\frac1{z^3}$ in $(2)$ to form a Cubic Equation whose roots are $\displaystyle2\cos\frac{2n\pi }7$ where $n=1,2,3$
Now apply Vieta's formula