Find this integral $$I=\int_{0}^{\infty}\dfrac{x\sin{(2x)}}{x^2+4}dx$$
let $x=2t$, then $$I=\int_{0}^{\infty}\dfrac{t\sin{(4t)}}{(t^2+1)}dt$$ then $$I=1/2\int_{0}^{\infty}\sin{(4t)}d\ln{(t^2+1)}$$ then I can't.
This problem have without residue methods?