Let $g = x^m - 1 \in \mathbb{Z}[x]$.
Question: Does $g = x^m - 1 \mid x^{mk} - 1$ for any $k \in \mathbb{N}$?
I know of only how to show the much weaker claim that $x^m - 1 \mid x^{m \cdot 2^k} - 1$ for any $k \in \mathbb{N}$.
Proof of Weaker Claim:
$(x^m - 1)(x^m + 1) = x^{2m} - 1$
$(x^{2m} - 1)(x^{2m} + 1) = x^{4m} - 1$
$\vdots$
$(x^{m \cdot 2^{k-1}} - 1)(x^{m \cdot 2^{k-1}} - 1) = x^{m \cdot 2^k} - 1$
But now what about the stronger claim that $x^m - 1 \mid x^{mk} - 1$ for any $k \in \mathbb{N}$?