Hypothesis:
- $f = a_0 + a_1 x + \ldots + a_n x^n \in \mathbb{Z}[x]$
- $g = x^m - 1 \in \mathbb{Z}[x]$
- $f \mid g$
- $f^{(m)} = f(x^m) = a_0 + a_1 x^m + \ldots + a_n (x^m)^n \in \mathbb{Z}[x]$
- $f^{(m+i)} = f(x^{m + i}) = a_0 + a_1 x^{m+i} + \ldots + a_n (x^{m+i})^n \in \mathbb{Z}[x]$
Goal: Show that $f \mid f^{(m+i)} - f^{(m)}$ given that $f \mid g$.
Attempt:
- $f \mid f^{(m+i)} - f^{(m)}$ iff $f \mid f^{(m)}$ and $f \mid f^{(m+i)}$.
- If we can show $g \mid f^{(m)}$ and $g \mid f^{(m+i)}$, then our desired result will follow.
- Then our goal is to now show that $g \mid f^{(m)}, f^{(m+i)}$.
But why should (3) be true?