$$1+\frac1{2n}=\frac12\left(2+\frac1n\right)=\frac12+\frac12\left(1+\frac1n\right)$$
So we have $$ \left(1+\frac1n\right)^n\left(1+\frac1{2n}\right)=\frac{\left(1+\frac1n\right)^n+\left(1+\frac1n\right)^{n+1}}{2}\ge \left(1+\frac1n\right)^{n+1/2} $$
The last step is given by AM-GM.
Now, let's find when $\left(1+\frac1n\right)^{n+1/2}\ge e$. Taking the logarithm, we obtain $$\begin{align} \left(n+\frac12\right)\log\left(1+\frac1n\right)\ge 1 \end{align}$$
Note that $$-\log(1-x)=\int\frac1{1-x}\text dx=\int\sum_{k=0}^\infty x^k\text dx=\sum_{k=1}^\infty \frac{x^k}{k}$$
So $\log\left(1+\frac1n\right)=-\sum_{k=1}^\infty \frac{(-1)^k}{kn^k}$ and we have
$$\begin{align} \left(n+\frac12\right)\left(\sum_{k=1}^\infty \frac{(-1)^{k+1}}{kn^k}\right)&\ge 1\\
\sum_{k=0}^\infty\frac{(-1)^k}{(k+1)n^k}+\sum_{k=1}^\infty \frac{(-1)^{k+1}}{2kn^k}&\ge 1\\
\sum_{k=1}^\infty (-1)^{k}\frac{k}{2k(k+1)}n^{-k}&\ge 0 \end{align}$$
Note that this is an alternating series with terms that have a monotonically decreasing absolute value, therefore it is bounded below and above by its terms. The first term is $0$, so we may conclude the sum is $\ge 0$ and so the inequality holds for all $n$.
My answer here shows this more generally.