I would appreciate if somebody could help me with the following problem
Q:Calculate the sum: $$ \sum_{k=1}^n (-1)^k {n\choose k}\frac{1}{k+1} $$
I would appreciate if somebody could help me with the following problem
Q:Calculate the sum: $$ \sum_{k=1}^n (-1)^k {n\choose k}\frac{1}{k+1} $$
Let
$$f(x)=\sum_{k=1}^n (-1)^k {n\choose k}\frac{1}{k+1}x^{k+1}\qquad; f(0)=0$$ so $$f'(x)=\sum_{k=1}^n (-1)^k {n\choose k}x^{k}=(1-x)^n-1$$ hence $$f(x)=\frac{-1}{n+1}(1-x)^{n+1}-x+\frac{1}{n+1}$$
What's $f(1)=-\frac{n}{n+1}$?
$$ \begin{align} \sum_{k=1}^n(-1)^k\binom{n}{k}\frac1{k+1} &=\sum_{k=1}^n(-1)^k\binom{n+1}{k+1}\frac1{n+1}\\ &=\frac1{n+1}\sum_{k=2}^{n+1}(-1)^{k-1}\binom{n+1}{k}\\ &=\frac1{n+1}\left(1-(n+1)+\sum_{k=0}^{n+1}(-1)^{k-1}\binom{n+1}{k}\right)\\ &=-\frac n{n+1} \end{align} $$