3

Calculate $\sum_{k=1}^n (-1)^{k+1} \binom{n}{k}\frac{1}{k}$, I do not know hot get rid of that $k$, for me it is similar like $\binom{n}{k}=\frac{k}{n} \binom{n-1}{k-1}$, do you have some idea?

Robert Z
  • 145,942

3 Answers3

3

Hint. There is no closed formula here. Compute the first few terms and compare them with the $n$th-harmonic number $H_n=\sum_{k=1}^n\frac{1}{k}$. What can we conjecture?

P.S. BTW the linked sum $\sum(-1)^k{n\choose k}\frac{1}{k+1}$ is "similar" but quite much easier (it has a closed formula).

Robert Z
  • 145,942
  • it is the same but how to prove that – Marko Škorić Nov 17 '18 at 09:37
  • 1
    You can try by induction or by an "integral" trick by considering $\sum_{k=1}^n(-1)^k{n\choose k}x^{k-1}$. – Robert Z Nov 17 '18 at 09:40
  • Actually, there is a closed formula: see answer below – G Cab Nov 17 '18 at 15:01
  • @GCab Maybe we do not agree with the same definition of "closed formula". However it is true that Stirling numbers of the first kind can be written by using harmonic numbers. See https://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind#Expansions_by_harmonic_numbers – Robert Z Nov 17 '18 at 15:13
2

We can write your sum as $$ \eqalign{ & f(n) = \sum\limits_{k = 1}^n {\left( { - 1} \right)^{\,k + 1} \left( \matrix{ n \cr k \cr} \right){1 \over k}} = \cr & = \sum\limits_{k = 0}^{n - 1} {\left( { - 1} \right)^{\,k} \left( \matrix{ n \cr k + 1 \cr} \right){1 \over {k + 1}}} = \sum\limits_{k = 0}^\infty {\left( { - 1} \right)^{\,k} \left( \matrix{ n \cr k + 1 \cr} \right){1 \over {k + 1}}} = \cr & = \sum\limits_{k = 0}^\infty {t_k } \cr} $$

and we can express it in terms of a Hypergeometric function, since $$ \eqalign{ & t_0 = \left( \matrix{ n \cr 1 \cr} \right) = n \cr & {{t_{k + 1} } \over {t_k }} = - {{n^{\,\underline {\,k + 2\,} } } \over {\left( {k + 2} \right)\left( {k + 2} \right)!}} {{\left( {k + 1} \right)\left( {k + 1} \right)!} \over {n^{\,\underline {\,k + 1\,} } }} = \cr & = - {{\left( {n - 1 - k} \right)} \over 1}{{\left( {k + 1} \right)} \over {\left( {k + 2} \right)\left( {k + 2} \right)}} = {{\left( {k - n + 1} \right)\left( {k + 1} \right)} \over {\left( {k + 2} \right)\left( {k + 2} \right)}} \cr} $$

Then $$ f(n) = n\;{}_3F_2 \left( {\left. {\matrix{ { - n + 1,\;1,\;1} \cr {2,\;2} \cr } \;} \right|\;1} \right) $$

Alternatively, we have that $$ \eqalign{ & f(n + 1) = \sum\limits_{k = 1}^{n + 1} {\left( { - 1} \right)^{\,k + 1} \left( \matrix{ n + 1 \cr k \cr} \right){1 \over k}} = \cr & = \left( {\sum\limits_{k = 1}^{n + 1} {\left( { - 1} \right)^{\,k + 1} \left( \matrix{ n \cr k \cr} \right){1 \over k}} + \sum\limits_{k = 1}^{n + 1} {\left( { - 1} \right)^{\,k + 1} \left( \matrix{ n \cr k - 1 \cr} \right){1 \over k}} } \right) = \cr & = \left( {\sum\limits_{k = 1}^{n + 1} {\left( { - 1} \right)^{\,k + 1} \left( \matrix{ n \cr k \cr} \right){1 \over k}} + {1 \over {n + 1}}\sum\limits_{k = 1}^{n + 1} {\left( { - 1} \right)^{\,k + 1} \left( \matrix{ n + 1 \cr k \cr} \right)} } \right) = \cr & = \sum\limits_{k = 1}^n {\left( { - 1} \right)^{\,k + 1} \left( \matrix{ n \cr k \cr} \right){1 \over k}} - {1 \over {n + 1}}\left( {0^{\,n + 1} - 1} \right) = \cr & = f(n) + {1 \over {n + 1}} \cr} $$ i.e.: $$ \left\{ \matrix{ f(0) = 0 \hfill \cr f(1) = 1 \hfill \cr f(n + 1) - f(n) = \Delta f(n) = {1 \over {n + 1}} \hfill \cr} \right. $$

or $$ \left\{ \matrix{ g(n) = n!f(n) \hfill \cr g(0) = 0 \hfill \cr g(1) = 1 \hfill \cr g(n + 1) = \left( {n + 1} \right)f(n) + n! \hfill \cr} \right. $$ and this is the recurrence satified by $$g(n)=\left[ \matrix{ n+1 \cr 2 \cr} \right]$$ where $\left[ \matrix{ n \cr m \cr} \right]$ represents the (unsigned) Stirling number of 1st kind.

Thus $$ \bbox[lightyellow] { f(n) = \sum\limits_{k = 1}^n {\left( { - 1} \right)^{\,k + 1} \binom{n}{k}{1 \over k}} = {1 \over {n!}}\left[ \matrix{ n + 1 \cr 2 \cr} \right] }$$

Also refer to OEIS seq. A000254 .

G Cab
  • 35,272
1

This problem and its type appear at MSE regularly. Suppose we seek to compute

$$S_n = \sum_{k=1}^n {n\choose k} \frac{(-1)^{k+1}}{k}.$$

With this in mind we introduce the function

$$f(z) = n! (-1)^{n+1} \frac{1}{z^2} \prod_{q=1}^n \frac{1}{z-q}.$$

We then obtain for $1\le k\le n$

$$\mathrm{Res}_{z=k} f(z) = (-1)^{n+1} \frac{n!}{k^2} \prod_{q=1}^{k-1} \frac{1}{k-q} \prod_{q=k+1}^n \frac{1}{k-q} \\ = (-1)^{n+1} \frac{n!}{k} \frac{1}{k!} \frac{(-1)^{n-k}}{(n-k)!} = {n\choose k} \frac{(-1)^{k+1}}{k}.$$

This means that

$$S_n = \sum_{k=1}^n \mathrm{Res}_{z=k} f(z)$$

and since residues sum to zero we have

$$S_n + \mathrm{Res}_{z=0} f(z) + \mathrm{Res}_{z=\infty} f(z) = 0.$$

We can compute the residue at infinity by inspection (it is zero) or more formally through

$$\mathrm{Res}_{z=\infty} n! (-1)^{n+1} \frac{1}{z^2} \prod_{q=1}^n \frac{1}{z-q} \\ = - n! (-1)^{n+1} \mathrm{Res}_{z=0} \frac{1}{z^2} z^2 \prod_{q=1}^n \frac{1}{1/z-q} \\ = - n! (-1)^{n+1} \mathrm{Res}_{z=0} \prod_{q=1}^n \frac{z}{1-qz} \\ = - n! (-1)^{n+1} \mathrm{Res}_{z=0} z^n \prod_{q=1}^n \frac{1}{1-qz} = 0.$$

We get for the residue at $z=0$ that

$$\mathrm{Res}_{z=0} f(z) = n! (-1)^{n+1} \left. \left(\prod_{q=1}^n \frac{1}{z-q}\right)'\right|_{z=0} \\ = - n! (-1)^{n+1} \left. \left(\prod_{q=1}^n \frac{1}{z-q}\right) \sum_{q=1}^n \frac{1}{z-q} \right|_{z=0} \\ = n! (-1)^n \frac{(-1)^{n}}{n!} \left(-H_{n}\right) = -H_n.$$

We thus have $S_n - H_n = 0$ or

$$\bbox[5px,border:2px solid #00A000]{ S_n = H_n = \sum_{k=1}^n \frac{1}{k}.}$$

Marko Riedel
  • 61,317