For $a>b>0$, calculate $$\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x}\ dx$$
My try : By Taylor series, $$\int\ \frac{e^{-ax} - e^{-bx}}{x} \ dx= \sum_{n=1}^\infty \frac{[\ (-a)^n -(-b)^n\ ]}{n}\frac{x^n}{n!} +C $$
Note that from ratio test, this series converges absolutely for $x\in [0,\infty)$. So give me a hint. Thanks
Seocond Try : Recall $$ \Gamma(t) = \int_0^\infty s^{t-1}e^{-s}\ ds\ (t>0)$$
So $$\Gamma(t) = a^t \int_0^\infty \frac{e^{-as}}{s^{1-t}}\ ds$$
So integral we want to calculate is $$ \lim_{t\rightarrow 0}\ [a^{-t} - b^{-t}]\ \Gamma(t) $$ Right ?
See I found the following article proving of Integral $\int_{0}^{\infty}\frac{e^{-bx}-e^{-ax}}{x}dx = \ln\left(\frac{a}{b}\right)$