$$
\begin{align}
\int_a^b\frac{e^{-x}-e^{-2x}}{x}\,\mathrm{d}x
&=\int_a^b\frac{e^{-x}}{x}\,\mathrm{d}x-\int_a^b\frac{e^{-2x}}{x}\,\mathrm{d}x\\
&=\int_a^b\frac{e^{-x}}{x}\,\mathrm{d}x-\int_{2a}^{2b}\frac{e^{-x}}{x}\,\mathrm{d}x\\
&=\int_a^{2a}\frac{e^{-x}}{x}\,\mathrm{d}x-\int_b^{2b}\frac{e^{-x}}{x}\,\mathrm{d}x\\[9pt]
&\to\log(2)-0
\end{align}
$$
as $a\to0$ and $b\to\infty$ since, for any $c\gt0$,
$$
e^{-2c}\log(2)
\le\int_c^{2c}\frac{e^{-x}}{x}\,\mathrm{d}x
\le e^{-c}\log(2)
$$
There is nothing special about $e^{-x}$ here. As long as $\lim\limits_{x\to0}f(x)=v_0$ and $\lim\limits_{x\to\infty}f(x)=v_\infty$, then
$$
\begin{align}
\int_a^b\frac{f(x)-f(\lambda x)}{x}\,\mathrm{d}x
&=\int_a^b\frac{f(x)}{x}\,\mathrm{d}x-\int_a^b\frac{f(\lambda x)}{x}\,\mathrm{d}x\\
&=\int_a^b\frac{f(x)}{x}\,\mathrm{d}x-\int_{\lambda a}^{\lambda b}\frac{f(x)}{x}\,\mathrm{d}x\\
&=\int_a^{\lambda a}\frac{f(x)}{x}\,\mathrm{d}x-\int_b^{\lambda b}\frac{f(x)}{x}\,\mathrm{d}x\\[9pt]
&\to v_0\log(\lambda)-v_\infty\log(\lambda)\\[6pt]
\int_0^\infty\frac{f(x)-f(\lambda x)}{x}\,\mathrm{d}x
&=(v_0-v_\infty)\log(\lambda)
\end{align}
$$
$$\int_0^\infty \frac{f(ax)-f(bx)}{x} dx = ( f(0) - f(\infty) ) \log\frac{b}{a}$$
For proof and generalization of these, see answers of the question http://math.stackexchange.com/q/61828/59379
– achille hui Dec 07 '13 at 08:54