0

Rather confused about Einstein notation:

trying to prove that $ \underline{a} \times (\underline{b} \times \underline{c} ) = (\underline{a} . \underline{c})\underline{b} - (\underline{a}.\underline{b})\underline{c} $

This is what I have in my notes:

let $\underline{d} = \underline{b}\times\underline{c} = \epsilon_{ijk}b_ic_i\underline{e}_k $ then $\underline{a}\times\underline{d} = \epsilon_{ijk}a_id_j\underline{e}_k$

so starting with LHS: $ \underline{a} \times (\underline{b} \times \underline{c} ) = \epsilon_{lmn}a_l(\epsilon_{ijm}b_ic_j)\underline{e}_n $ what I don't understand is where the "m" came from from the $\epsilon_{ijm}$ term. Afaik $\underline{a} \times\underline{b} = \epsilon_{ijk}a_ib_j\underline{e}_k $ , then the lecture goes on to use the fact that $\epsilon_{mln}\epsilon_{mij} = \delta_{li}\delta_{nj} - \delta_{li}\delta_{ni} $ which I don't understand where he got. I'm also really confused where the m came from - if I was doing this without lecture notes I would write $\underline{b}\times\underline{c} = \epsilon_{ijk}b_ic_j\underline{e}_k $ so $\underline{a} \times (\underline{b}\times\underline{c}) = \epsilon_{lmn}a_l(\epsilon_{ijk}b_ic_j)\underline{e}_n $ but would find it hard to proceed from there

sorry about my latex skills, I really tried my best

any help explaining this, thank you.

Shuchang
  • 9,800
DH.
  • 342
  • 3
  • 21
  • The $i$, $j$, $k$, etc are dummy variables. Its $a\cdot b = a_i b_i = a_m b_m = $ etc. The only rule is that you don't use the same letter to mean two different things in the same expression. So one of the $k$s has got to be replaced with some other letter. – Stephen Montgomery-Smith Nov 30 '13 at 22:36

1 Answers1

4

The Levi-Civita symbol is defined as $$ \varepsilon_{ijk} = \begin{cases} +1 & \text{if } (i,j,k) \text{ is } (1,2,3), (3,1,2) \text{ or } (2,3,1), \\ -1 & \text{if } (i,j,k) \text{ is } (1,3,2), (3,2,1) \text{ or } (2,1,3), \\ \;\;\,0 & \text{if }i=j \text{ or } j=k \text{ or } k=i \end{cases} $$ i.e. $\varepsilon_{ijk}$ is 1 if $(i, j, k)$ is an even permutations of $(1,2,3)$, $−1$ if it is an odd permutation, and $0$ if any index is repeated. For example $$\begin{align} \varepsilon_{132} &= -\varepsilon_{123} = - 1\\ \varepsilon_{312} &= -\varepsilon_{213} = -(-\varepsilon_{123}) = 1\\ \varepsilon_{231} &= -\varepsilon_{132} = -(-\varepsilon_{123}) = 1\\ \varepsilon_{232} &= -\varepsilon_{232} = 0 \end{align} $$ Note that the denition implies that we are always free to cyclically permute indices $$\varepsilon_{ijk} = \varepsilon_{kij} =\varepsilon_{jki}.$$ On the other hand, swapping any two indices gives a sign-change $$\varepsilon_{ijk} = -\varepsilon_{ikj}.$$ The Kronecker delta is defined as: $$ \delta_{ij} = \begin{cases} 0 &\text{if } i \neq j \\ 1 &\text{if } i=j \end{cases} $$ The Levi-Civita symbol is related to the Kronecker delta by the following equations $$ \begin{align} \varepsilon_{ijk}\varepsilon_{lmn} & = \begin{vmatrix} \delta_{il} & \delta_{im}& \delta_{in}\\ \delta_{jl} & \delta_{jm}& \delta_{jn}\\ \delta_{kl} & \delta_{km}& \delta_{kn}\\ \end{vmatrix}\\ & = \delta_{il}\left( \delta_{jm}\delta_{kn} - \delta_{jn}\delta_{km}\right) - \delta_{im}\left( \delta_{jl}\delta_{kn} - \delta_{jn}\delta_{kl} \right) + \delta_{in} \left( \delta_{jl}\delta_{km} - \delta_{jm}\delta_{kl} \right). \end{align} $$ A special case of this result is (summing over $i$) $$ \varepsilon_{ijk}\varepsilon_{imn} = \delta_{jm}\delta_{kn} - \delta_{jn}\delta_{km}.\tag 1 $$

The $i$th component of $\pmb a \times\pmb b$ is written as $$ (\pmb a \times\pmb b)_i = \sum_{j=1}^3\sum_{k=1}^3\varepsilon_{ijk}a_jb_k = \varepsilon_{ijk}a_jb_k \tag 2 $$ where the last equality comes from the Einstein convention for repeated indices. For example, $$(\pmb a \times\pmb b)_1 = \varepsilon_{1jk}a_jb_k = \varepsilon_{123}a_2b_3 + \varepsilon_{132}a_3b_2 = a_2b_3 − a_3b_2.$$

Let us calculate the vector triple product $\pmb a \times (\pmb b \times \pmb c)$: $$\begin{align} (\pmb a \times (\pmb b \times \pmb c))_i &= \varepsilon_{ijk}a_j(\pmb b \times \pmb c)_k \qquad\qquad\qquad\text{(use (2))}\\ &= (\varepsilon_{ijk}a_j)(\varepsilon_{klm}b_lc_m) \qquad\qquad\;\text{(use (2) with $ijk\to klm$)}\\ &= \varepsilon_{kij}\varepsilon_{klm}a_jb_lc_m\qquad\qquad\quad\;\;\;\text{(use $\varepsilon_{ijk} = \varepsilon_{kij}$)}\\ &=(\delta_{il}\delta_{jm} − \delta_{im}\delta_{jl})a_jb_lc_m\qquad\;\text{(use (1))}\\ &= a_jb_ic_j − a_jb_jc_i\qquad\qquad\quad\;\,\;\text{(use $\delta_{\mu\nu}\alpha_{\mu}\beta_{\nu}=\alpha_{\mu}\beta_{\mu}$)}\\ &= (\pmb a \cdot\pmb c)b_i − (\pmb a \cdot \pmb b)c_i\qquad\quad\;\;\,\;\text{(use $\alpha_{\mu}\beta_{\mu}=\pmb\alpha\cdot\pmb\beta$)} \end{align} $$ Therefore, we obtain $$ \pmb a \times (\pmb b \times \pmb c)=(\pmb a \cdot \pmb c)\pmb b-(\pmb a \cdot \pmb b)\pmb c $$

alexjo
  • 14,976