I want to prove that $\nabla\times(\nabla\times \boldsymbol{A}) = \nabla(\nabla\cdot\boldsymbol{A}) - \nabla^2\boldsymbol{A}$ using the Levi Civita. This is solved considering the $i$-th component of $\nabla\times(\nabla\times \boldsymbol{A})$. But I was performing the calculation and don't know where my mistake is:
\begin{align} \nabla\times(\nabla\times \boldsymbol{A}) &= \nabla \times (\epsilon_{ijk}\hat{e}_i\nabla_jA_k) =\epsilon_{lmn}\hat{e}_l\nabla_m(\epsilon_{ijk}\hat{e}_i\nabla_jA_k)_n\\ &=\epsilon_{lmn}\hat{e}_l\nabla_m\epsilon_{njk}\nabla_jA_k = \epsilon_{lmn}\epsilon_{njk}\hat{e}_l\nabla_m\nabla_jA_k\\ &=(\delta_{lk}\delta_{mj} - \delta_{km}\delta_{lj})\hat{e}_l\nabla_m\nabla_jA_k\\ &=\hat{e}_l\nabla_m\nabla_mA_l - \hat{e}_l\nabla_m\nabla_lA_m = \nabla^2\boldsymbol{A} - \nabla(\nabla\cdot\boldsymbol{A}). \end{align}
I get the result but with a negative sign. The only part in which I may have done things badly is when taking the levi-civita product, but I'm pretty sure that I did that correctly.
Does somebody spot my mistake? I appreciate your effort.