3

Let $A=(a_{ij})_{n\times n}$ such $a_{ij}>0$ and $\det(A)>0$.

Defining the matrix $B:=(a_{ij}^{\frac{1}{n}})$, show that $\det(B)>0?$.

This problem is from my friend, and I have considered sometimes, but I can't. Thank you

Julien
  • 44,791
math110
  • 93,304

3 Answers3

7

The statement is false. Counterexample: $$ B=\pmatrix{2&2&2\\ 3&4&2\\ 3&1&4},\ A=B\circ B\circ B=\pmatrix{8&8&8\\ 27&64&8\\ 27&1&64},\ \det(B)=-2,\ \det(A)=7000. $$

Edit. However, if $B$ is positive definite, the converse of your statement is true. More specifically, suppose $B$ is positive definite (whether it is entrywise positive is unimportant) and $A$ is the $n$-fold Hadamard product of $B$ (i.e. $A=(b_{ij}^n)$). Then $\det(A)>0$. This is because for positive semidefinite matrices $X$ and $Y$, we have $\det(X\circ Y)\ge\det(X)\det(Y)$.

user1551
  • 139,064
6

This is wrong. $$ \begin{pmatrix}27&8&1\\1&1&\epsilon\\8&\epsilon&1\end{pmatrix} $$ where $\epsilon>0$ is very small.

3

It is false when $n\ge 3$. Counter-example: for $x>0$ small, let

$$A(x)=\begin{pmatrix}8 & (1+3x)^3 & 1\\ 1 & (1+x)^3 & 1 \\ x^3 & 1& 1\end{pmatrix}.$$ Then

$$B(x)=\begin{pmatrix}2 & 1+3x & 1\\ 1 & 1+x & 1 \\ x & 1& 1\end{pmatrix}.$$ Direct calculation shows that when $x>0$ is small enough, $$\det A(x)=15x+O(x^2)>0,\quad \det B(x)=-x+O(x^2)<0.$$

Hu Zhengtang
  • 3,757