Question:
Show that $$A=\lim_{n\to \infty}\sqrt{1+\sqrt{\dfrac{1}{2}+\sqrt{\dfrac{1}{3}+\cdots+\sqrt{\dfrac{1}{n}}}}}$$ exists, and find the best estimate limit $A$.
It is easy to show that
$$\sqrt{1+\sqrt{\dfrac{1}{2}+\sqrt{\dfrac{1}{3}+\cdots+\sqrt{\dfrac{1}{n}}}}}\le\sqrt{1+\sqrt{1+\sqrt{1+\cdots+\sqrt{1}}}}$$ and it is well known that this limit $$\sqrt{1+\sqrt{1+\sqrt{1+\cdots+\sqrt{1}}}}$$ exists.
So $$A=\lim_{n\to \infty}\sqrt{1+\sqrt{\dfrac{1}{2}+\sqrt{\dfrac{1}{3}+\cdots+\sqrt{\dfrac{1}{n}}}}}$$
But can use some math methods to find an approximation to this $A$ by hand?
and I guess maybe this is true: $$1<A\le (\pi)^{\frac{1}{e}}?$$
By the way: we can prove $A$ is a transcendental number?
Thank you very much!