I need to prove that if $1 < p < \infty$ and $a, b \geqslant 0$ then $$ ab \leqslant \frac{a^{p}}{p} + \frac{b^{q}}{q}$$ where $\frac 1p+\frac 1q=1$.
I fix $b$ and maximize the function $f(a) = ab - \frac{a^{p}}{p}$, but the maximum I find is $b^{q}$ with $q = \frac{1}{p-1}$. I have no idea how to get $q$ in the denominator. Any suggestion?