2

How do I prove by mathematical induction that$$\forall\; n>3,\;\;n^2<n!$$

I tried, $n=4$ then $4^2<4!$ what is true, because $16<24$.$$$$Hypotesis: $n^2<n!$ $$$$Thesis: $(n+1)^2<(n+1)!$$$$$Show: $$(n+1)^2=n^2+2n+1<n!+2n+1$$ and????

benjamin_ee
  • 3,759

2 Answers2

2

Hint: $$\dfrac{(n+1)^2}{n^2} = \left(1+\dfrac1n\right)^2 < 2^2 < n+1 = \dfrac{(n+1)!}{n!}, \qquad n > 3.$$

njguliyev
  • 14,473
  • 1
  • 26
  • 43
2

$$(n+1)!=(n+1)\cdot n!>(n+1)\cdot n^2>(n+1)^2$$

Here $n^2>n+1$ since $\forall n>3, \qquad n^2-n-1=(n-\frac{1}{2})^2-\frac{5}{4}>0$

Shaswata
  • 5,068