find the limit $$\lim_{n\to\infty}(2a)^{\frac{n}{2}}\underbrace{\sqrt{a-\sqrt{a(a-1)+\sqrt{a(a-1)+\cdots}}}}_{n \textrm{ square roots}}$$
My try: I know this Find $\lim_{n\to\infty}2^n\underbrace{\sqrt{2-\sqrt{2+\sqrt{2+\dots+\sqrt2}}}}_{n \textrm{ square roots}}$.
and this problem just
$$\underbrace{\sqrt{2-\sqrt{2+\sqrt{2+\dots+\sqrt2}}}}_{n \textrm{ square roots}}=4\left|\sin{\frac{\theta}{2^n}}\right|$$ so follow this limit is easy to find it.
But $$\underbrace{\sqrt{a-\sqrt{a(a-1)+\sqrt{a(a-1)+\cdots}}}}_{n \textrm{ square roots}}=?$$