For an approach using MCT:
Theorem: If $f$ is Lebesgue integrable, then for any $\epsilon>0$, ther exists a $\delta>0$ such that if $m(E)<\delta$, then $\int_E \vert f \vert < \epsilon.$
Proof:
We can safely assume that $f \geq 0$. Then define
$$f_N(x):=f(x) \cdot \chi_{E_N}$$
where
$$E_N:=\{x: f(x) \leq N\}$$
Then the $f_N$ are measurable and furthermore one has for every $N \in \mathbb{N}$ that
$$f_N \leq f_{N+1}$$
Then by the Monotone Convergence Theorem one has for any given $\epsilon >0$ that there exists an $N \in \mathbb{N}$ such that
$$\int_{\mathbb{R}^d} f - f_N < \frac{\epsilon}{2} \space \space \space \space (*)$$
Then choose your $\delta>0$ such that $\delta<\frac{\epsilon}{2N}$. Then if $m(E)< \delta$ one can compute
\begin{equation}
\begin{split}
\int_E f &= \int_E f- f_N + \int_E f_N && \text{adding 1 trick}\\ &\leq \int_{\mathbb{R}^d} f - f_N + \int_E f_N && \text{monotonicity of Leb integral}\\ &\leq \int_{\mathbb{R}^d}f-f_N+Nm(E) && \text{by definition}\\ &< \frac{\epsilon}{2} + N\frac{\epsilon}{2N} && \text{since $m(E) < \delta$ and by $(*)$}\\ &= \epsilon.
\end{split}
\end{equation}
And since $\epsilon$ was arbitrary, the proof is complete. $\blacksquare$