use the residue theorem !
we first assume that :
$\exp\sqrt{x\,}=z$
then your formula turn out to be :
$
{\Large\int_{1}^{\sqrt{2}}}\,
\frac{\arccos\left(\vphantom{\huge A}
{z
\over
\sqrt{\vphantom{\large A}2\,}}\right)}
{1-z^2}
\,{\rm d}x
=
-\,\frac{\,\,\pi^{3}}{192}
$
the residue theorem gives ,
$
{\Large\int_{1}^{\sqrt{2}}}\,
\frac{\arccos\left(\vphantom{\ huge A}
{z
\over
\sqrt{\vphantom{\large A}2\,}}\right)}
{1-z^2}
\,{\rm d}x
=\frac{b\pi}{2}\cdot\frac{\arccos(1/\sqrt{2})}{2}\cdot\frac{\arccos(-1/\sqrt{2})}{-2}$$=-\frac{b\pi}{2}\cdot(\frac{\pi}{8})^2$
the last step is to calculate the radius :
$\frac{1}{b}=\frac{z}{2(Inz)^{'}}=$$z^{2}=z_{1}^{2}+z_{2}^{2}=\frac{3}{2}$$\Longrightarrow$$b=\frac{2}{3}$
then, your solution holds !