-1

How many integer solutions are there to the inequality $$y_1+y_2+y_3+y_4\lt184$$with $y_1\gt0$, $0\lt y_2\le10$, $0\le y_3\le17$, and $0\le y_4\le 19$?

How do we solve this using Incl. Excl. Principle?

I can see it clearly using Generating Function

1 Answers1

3

Here is one tedious way: $S=\sum_{i_4=0}^{18} \sum_{i_3=0}^{17} \sum_{i_2=1}^{10} (183-(i_2+i_3+i_4))$.

This works because $18+17+10 < 183$.

Since I need to procrastinate on some urgent but even more tedious work...

\begin{eqnarray} S &=& 19 \cdot 18 \cdot 10 \cdot 183 -19\cdot 18 \sum_{i_2=1}^{10} i_2 -19 \cdot 10 \sum_{i_3=0}^{17} i_3 - 18 \cdot 10 \sum_{i_4=0}^{18} i_4 \\ &=& 625860 - 342 \sum_{i_2=1}^{10} i_2 -190 \sum_{i_3=1}^{17} i_3 - 180 \sum_{i_4=1}^{18} i_4 \\ &=& 625860 - 342 \frac{1}{2}10 \cdot 11 -190 \frac{1}{2}17 \cdot 18 - 180 \frac{1}{2}18 \cdot 19\\ \\ &=& 547200 \end{eqnarray} (Assuming I calculated correctly.)

copper.hat
  • 172,524