Here is one tedious way:
$S=\sum_{i_4=0}^{18} \sum_{i_3=0}^{17} \sum_{i_2=1}^{10} (183-(i_2+i_3+i_4))$.
This works because $18+17+10 < 183$.
Since I need to procrastinate on some urgent but even more tedious work...
\begin{eqnarray}
S &=& 19 \cdot 18 \cdot 10 \cdot 183
-19\cdot 18 \sum_{i_2=1}^{10} i_2
-19 \cdot 10 \sum_{i_3=0}^{17} i_3
- 18 \cdot 10 \sum_{i_4=0}^{18} i_4 \\
&=& 625860
- 342 \sum_{i_2=1}^{10} i_2
-190 \sum_{i_3=1}^{17} i_3
- 180 \sum_{i_4=1}^{18} i_4 \\
&=& 625860
- 342 \frac{1}{2}10 \cdot 11
-190 \frac{1}{2}17 \cdot 18
- 180 \frac{1}{2}18 \cdot 19\\ \\
&=& 547200
\end{eqnarray}
(Assuming I calculated correctly.)