$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,{\rm Li}_{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
$\ds{\sum_{k\ =\ 0}^{n}{k \choose a}{n - k \choose b}={n + 1 \choose a + b +1}:
\ {\large ?}}$.
$$\mbox{Lets}\quad
{\cal F}\pars{z} \equiv \sum_{n\ =\ 0}^{\infty}\bracks{%
\sum_{k\ =\ 0}^{n}{k \choose a}{n - k \choose b}}z^{n}\tag{1}
$$
such that
\begin{align}{\cal F}\pars{z}&
=\sum_{k\ =\ 0}^{\infty}{k \choose a}\sum_{n\ =\ k}^{\infty}{n - k \choose b}z^{n}
=\sum_{k\ =\ 0}^{\infty}{k \choose a}\sum_{n\ =\ 0}^{\infty}{n \choose b}z^{n + k}
\\[5mm]&=\bracks{\sum_{k\ =\ 0}^{\infty}{k \choose a}z^{k}}
\bracks{\sum_{n\ =\ 0}^{\infty}{n \choose b}z^{n}}
\end{align}
So, we have to evaluate the following sum:
\begin{align}
\sum_{j\ =\ 0}^{\infty}{j \choose c}z^{j}&=
\sum_{j\ =\ 0}^{\infty}
\bracks{\oint_{\verts{w}\ =\ a}{\pars{1 + w}^{j} \over w^{c + 1}}
\,{\dd w \over 2\pi\ic}}z^{j}
\\[5mm] & =\oint_{\verts{w}\ =\ a}
{1 \over w^{c + 1}}\sum_{j\ =\ 0}^{\infty}\bracks{\pars{1 + w}z}^{j}
\,{\dd z \over 2\pi\ic}
\\[5mm]&=\oint_{\verts{w}\ =\ a}{1 \over w^{c + 1}}{1 \over 1 - \pars{1 + w}z}
\,{\dd w \over 2\pi\ic}
\\[5mm]&={1 \over z\pars{1/z - 1}}\oint_{\verts{w}\ =\ a}{1 \over w^{c + 1}}{1 \over 1 - w/\pars{1/z - 1}}
\,{\dd z \over 2\pi\ic}
\\[5mm]&={1 \over z\pars{1/z - 1}}\sum_{j\ =\ 0}^{\infty}\pars{1/z - 1}^{-j}
\oint_{\verts{w}\ =\ a}{1 \over w^{c - j + 1}}\,{\dd z \over 2\pi\ic}
\\[5mm] & =
{1 \over z\pars{1/z - 1}^{c + 1}}
\end{align}
Note that we can choose $\ds{0\ <\ a}$ such that
$\ds{\verts{\pars{1 + w}z}\ <\ 1}$
Then,
\begin{align}
{\cal F}\pars{z}&={1 \over z\pars{1/z - 1}^{a + 1}}\,
{1 \over z\pars{1/z - 1}^{b + 1}}={z^{a + b} \over \pars{1 - z}^{a + b + 2}}
\\[5mm] & =
z^{a + b}\sum_{n\ =\ 0}^{\infty}
{-a - b - 2 \choose n}\pars{-1}^{n}z^{n}
\\[5mm]&=\sum_{n\ =\ a + b}^{\infty}{-a - b - 2 \choose n - a - b}
\pars{-1}^{n - a - b}z^{n}
\\[5mm]&=\sum_{n\ =\ a + b}^{\infty}
{a + b + 2 + n - a - b - 1\choose n - a - b}\pars{-1}^{n - a - b}
\pars{-1}^{n - a - b}z^{n}
\\[5mm]&=\sum_{n\ =\ a + b}^{\infty}{n + 1 \choose n - a - b}z^{n}
=\sum_{n\ =\ a + b}^{\infty}\color{#66f}{\large{n + 1 \choose a + b + 1}}z^{n}
\qquad\qquad\qquad\qquad\qquad\pars{2}
\end{align}
With $\pars{1}$ and $\pars{2}$ we conclude:
$$\color{#66f}{\large%
\sum_{k\ =\ 0}^{n}{k \choose a}{n - k \choose b}
=\left\{\begin{array}{lcl}
{n + 1 \choose a + b + 1} & \mbox{if} & n\ \geq a + b
\\[2mm]
0 &&\mbox{otherwise}
\end{array}\right.}
$$