What follows is admittedly not the simplest proof. We post here by way
of enrichment and to showcase four techniques, coefficient extractors,
the Iverson bracket, residues and the Leibniz rule.
We seek to show that
$$\sum_{q=a+1}^n {q-1\choose a} {n-q\choose k-a}
= {n\choose k+1}$$
where $k\ge a$ for the binomial coefficient to be defined,
and $n\ge a+1$ or alternatively
$$\sum_{q=0}^{n-a-1} {q+a\choose a} {n-a-1-q\choose k-a}
= {n\choose k+1}.$$
The LHS is
$$[z^{k-a}] (1+z)^{n-a-1}
\sum_{q\ge 0} {q+a\choose a} (1+z)^{-q} [[q\le n-a-1]]
\\ = [z^{k-a}] (1+z)^{n-a-1}
\sum_{q\ge 0} {q+a\choose a} (1+z)^{-q}
[w^{n-a-1}] \frac{w^q}{1-w}
\\ = [z^{k-a}] (1+z)^{n-a-1} [w^{n-a-1}] \frac{1}{1-w}
\sum_{q\ge 0} {q+a\choose a} (1+z)^{-q} w^q
\\ = [z^{k-a}] (1+z)^{n-a-1} [w^{n-a-1}] \frac{1}{1-w}
\frac{1}{(1-w/(1+z))^{a+1}}
\\ = [z^{k-a}] (1+z)^{n} [w^{n-a-1}] \frac{1}{1-w}
\frac{1}{(1+z-w)^{a+1}}.$$
This is
$$[z^{k-a}] (1+z)^n (-1)^a
\mathrm{Res}_{w=0} \frac{1}{w^{n-a}}
\frac{1}{w-1} \frac{1}{(w-(1+z))^{a+1}}.$$
Now the residue at infinity for $w$ is zero by inspection, residues
sum to zero and the residue at $w=1$ yields
$$[z^{k-a}] (1+z)^n (-1)^a \frac{1}{(-1)^{a+1} z^{a+1}}
= - {n\choose k+1}.$$
This is the claim if we can show that the contribution from the pole at
$w=1+z$ is zero. We get (Leibniz rule)
$$\frac{1}{a!} \left(\frac{1}{w^{n-a}} \frac{1}{w-1}\right)^{(a)}
= \frac{1}{a!}
\sum_{q=0}^a {a\choose q}
\frac{(-1)^q (n-1-a+q)!}{(n-1-a)! \times w^{n-a+q}}
\frac{(-1)^{a-q} (a-q)!}{(w-1)^{a+1-q}}
\\ = (-1)^a \sum_{q=0}^a {n-1-a+q\choose q}
\frac{1}{w^{n-a+q}} \frac{1}{(w-1)^{a+1-q}}.$$
We thus obtain for the contribution
$$[z^{k-a}] (1+z)^n \sum_{q=0}^a {n-1-a+q\choose q}
\frac{1}{(1+z)^{n-a+q}} \frac{1}{z^{a+1-q}}
\\ = \sum_{q=0}^a {n-1-a+q\choose q}
[z^{k+1-q}] (1+z)^{a-q} = 0$$
because $a\ge q$ and $k+1\gt a.$ This concludes the argument.